Dupuy’s Verities: The Requirements For Successful Defense

Dupuy’s Verities: The Requirements For Successful Defense

A Sherman tank of the U.S. Army 9th Armored Division heads into action against the advancing Germans during the Battle of the Bulge. {Warfare History Network]

The eighth of Trevor Dupuy’s Timeless Verities of Combat is:

Successful defense requires depth and reserves.

From Understanding War (1987):

Successful defense requires depth and reserves. It has been asserted that outnumbered military forces cannot afford to withhold valuable �repower from ongoing defensive operations and keep it idle in reserve posture. History demonstrates that this is specious logic, and that linear defense is disastrously vulnerable. Napoleon’s crossing of the Po in his �rst campaign in 1796 is perhaps the classic demonstration of the fallacy of linear (or cordon) defense.

The defender may have all of his �repower committed to the anticipated operational area, but the attacker’s advantage in having the initiative can always render much of that defensive �repower useless. Anyone who suggests that modern technology will facilitate the shifting of engaged �repower in battle overlooks three considerations: (a) the attacker can inhibit or prevent such movement by both direct and indirect means, (b) a defender engaged in a fruitless �re�ght against limited attacks by numerically inferior attackers is neither physically nor psychologically attuned to making lateral movements even if the enemy does not prevent or inhibit it, and (c) withdrawal of forces from the line (even if possible) provides an alert attacker with an opportunity for shifting the thrust of his offensive to the newly created gap in the defenses.

Napoleon recognized that hard-fought combat is usually won by the side committing the last reserves. Marengo, Borodino, and Ligny are typical examples of Napoleonic victories that demonstrated the importance of having resources available to tip the scales. His two greatest defeats, Leipzig and Waterloo, were suffered because his enemies still had reserves after his were all committed. The importance of committing the last reserves was demonstrated with particular poignancy at Antietam in the American Civil War. In World War II there is no better example than that of Kursk. [pp. 5-6]

Dupuy’s observations about the need for depth and reserves for a successful defense take on even greater current salience in light of the probably character of the near-future battlefield. Terrain lost by an unsuccessful defense may be extremely difficult to regain under prevailing circumstances.

The interaction of increasing weapon lethality and the operational and human circumstantial variables of combat continue to drive the long-term trend in dispersion of combat forces in frontage and depth.

Long-range precision firepower, ubiquitous battlefield reconnaissance and surveillance, and the effectiveness of cyber and information operations will make massing of forces and operational maneuver risky affairs.

As during the Cold War, the stability of alliances may depend on a willingness to defend forward in the teeth of effective anti-access/area denial (A2/AD) regimes that will make the strategic and operational deployment of reserves risky as well. The successful suppression of A2/AD networks might court a nuclear response, however.

Finding an effective solution for enabling a successful defense-in-depth in the future will be a task of great difficulty.

Toward An American Approach To Proxy Warfare

Toward An American Approach To Proxy Warfare

U.S.-supported Philippine guerilla fighters led the resistance against the Japanese occupation of Luzon during World War II. [Warfare History Network]

U.S. Army Major Amos Fox has recently published the first two of a set of three articles examining nature of proxy warfare in the early 21st century and suggests some ideas for how the U.S. might better conduct it.

In “In Pursuit of a General Theory of Proxy Warfare,” published in February 2019 by the The Institute of Land Warfare at the Association of the U.S. Army, and “Time, Power, and Principal-Agent Problems: Why the U.S. Army is Ill-Suited for Proxy Warfare Hotspots,” published in the March-April 2019 edition of Military Review, Fox argues,

Proxy environments dominate modern war… It is not just a Russian, Iranian or American approach to war, but one in which many nations and polities engage. However, the U.S. Army lacks a paradigm for proxy warfare, which disrupts its ability to understand the environment or develop useful tactics, operations and strategies for those environments.

His examination of the basic elements of proxy warfare leads him to conclude that “it is dominated by a principal actor dynamic, power relationships and the tyranny of time.” From this premise, Fox outlines two basic models of proxy warfare: exploitative and transactional.

The exploitative model…is characterized by a proxy force being completely dependent on its principal for survival… [It] is usually the result of a stronger actor looking for a tool—a proxy force—to pursue an objective. As a result, the proxy is only as useful to the principal as its ability to make progress toward the principal’s ends. Once the principal’s ends have been achieved or the proxy is unable to maintain momentum toward the principal’s ends, then the principal discontinues the relationship or distances itself from the proxy.

The transactional model is…more often like a business deal. An exchange of services and goods that benefits all parties—defeat of a mutual threat, training of the agent’s force, foreign military sales and finance—is at the heart of the transactional model. However, this model is a paradox because the proxy is the powerbroker in the relationship. In many cases, the proxy government is independent but looking for assistance in defeating an adversary; it is not interested in political or military subjugation by the principal. Moreover, the proxy possesses the power in the relationship because its association with the principal is wholly transactional…the clock starts ticking on the duration of the bond as soon as the first combined shot is fired. As a result, as the common goal is gradually achieved, the agent’s interest in the principal recedes at a comparable rate.

With this concept in hand, Fox makes that case that

[T]he U.S. Army is ill-suited for warfare in the proxy environment because it mismanages the fixed time and the finite power it possesses over a proxy force in pursuit of waning mutual interests. Fundamentally, the salient features of proxy environments—available time, power over a proxy force, and mutual interests—are fleeting due to the fact that proxy relationships are transactional in nature; they are marriages of convenience in which a given force works through another in pursuit of provisionally aligned political or military ends… In order to better position itself to succeed in the proxy environment, the U.S. Army must clearly understand the background and components of proxy warfare.

These two articles provide an excellent basis for a wider discussion for thinking about and shaping not just a more coherent U.S. Army doctrine, but a common policy/strategic/operational framework for understanding and successfully operating in the proxy warfare environments that will only loom larger in 21st century international affairs. It will be interesting to see how Fox’s third article rounds out his discussion.

TDI Friday Read: Tank Combat at Kursk

TDI Friday Read: Tank Combat at Kursk

Today’s edition of TDI Friday Read is a roundup of posts by TDI President Christopher Lawrence exploring the details of tank combat between German and Soviet forces at the Battle of Kursk in 1943. The prevailing historical interpretation of Kursk is of the Soviets using their material and manpower superiority to blunt and then overwhelm the German offensive. This view is often buttressed by looking at the  ratio of the numbers of tanks destroyed in combat. Chris takes a deeper look at the data, the differences in the ways “destroyed” tanks were counted and reported, and the differing philosophies between the German and Soviet armies regarding damaged tank recovery and repair. This yields a much more nuanced perspective on the character of tank combat at Kursk that does not necessarily align with the prevailing historical interpretations. Historians often discount detailed observational data on combat as irrelevant or too difficult to collect and interpret. We at TDI believe that with history, the devil is always in the details.

Armor Exchange Ratios at Kursk

Armor Exchange Ratios at Kursk, 5 and 6 July 1943

Soviet Tank Repairs at Kursk (part 1 of 2)

Soviet Tank Repairs at Kursk (part 2 of 2)

German Damaged versus Destroyed Tanks at Kursk

Soviet Damaged versus Destroyed Tanks at Kursk

Comparative Tank Exchange Ratios at Kursk

TDI Friday Read: Engaging The Phalanx

TDI Friday Read: Engaging The Phalanx

The December 2018 issue of Phalanx, a periodical journal published by The Military Operations Research Society (MORS), contains an article by Jonathan K. Alt, Christopher Morey, and Larry Larimer, entitled “Perspectives on Combat Modeling.� (the article is paywalled, but limited public access is available via JSTOR).

Their article was written partly as a critical rebuttal to a TDI blog post originally published in April 2017, which discussed an issue of which the combat modeling and simulation community has long been aware but slow to address, known as the “Base of Sand” problem.

Wargaming Multi-Domain Battle: The Base Of Sand Problem

In short, because so little is empirically known about the real-world structures of combat processes and the interactions of these processes, modelers have been forced to rely on the judgement of subject matter experts (SMEs) to fill in the blanks. No one really knows if the blend of empirical data and SME judgement accurately represents combat because the modeling community has been reluctant to test its models against data on real world experience, a process known as validation.

TDI President Chris Lawrence subsequently published a series of blog posts responding to the specific comments and criticisms leveled by Alt, Morey, and Larimer.

How are combat models and simulations tested to see if they portray real-world combat accurately? Are they actually tested?

Engaging the Phalanx

How can we know if combat simulations adhere to strict standards established by the DoD regarding validation? Perhaps the validation reports can be released for peer review.

Validation

Some claim that models of complex combat behavior cannot really be tested against real-world operational experience, but this has already been done. Several times.

Validating Attrition

If only the “physics-based aspects” of combat models are empirically tested, do those models reliably represent real-world combat with humans or only the interactions of weapons systems?

Physics-based Aspects of Combat

Is real-world historical operational combat experience useful only for demonstrating the capabilities of combat models, or is it something the models should be able to reliably replicate?

Historical Demonstrations?

If a Subject Matter Expert (SME) can be substituted for a proper combat model validation effort, then could not a SME simply be substituted for the model? Should not all models be considered expert judgement quantified?

SMEs

What should be done about the “Base of Sand” problem? Here are some suggestions.

Engaging the Phalanx (part 7 of 7)

Persuading the military operations research community of the importance of research on real-world combat experience in modeling has been an uphill battle with a long history.

Diddlysquat

And the debate continues…

Dupuy’s Verities: The Advantage Of The Offensive

Dupuy’s Verities: The Advantage Of The Offensive

Union assault on the “Mule Shoe” salient, 12 May 1864, by Thure de Thulstrup (1887) [Wikimedia]

The seventh of Trevor Dupuy’s Timeless Verities of Combat is:

An attacker willing to pay the price can always penetrate the strongest defenses.

From Understanding War (1987):

No matter how alert the defender, no matter how skillful his dispositions to avoid or mitigate the effects of surprise or the effects of flank or rear attack, a skillful attacker can always achieve at least a temporary advantage for some time at a place he has selected. This is one reason why Napoleon always endeavored to seize and retain the initiative. In the great battles of 1864 and 1865 in Virginia, Lee was always able to exploit his defensive advantage to the utmost. But Grant equally was always able to achieve a temporary superiority when and where he wished. This did not always result in a Union victory—given Lee’s defensive skill—but invariably it forced Lee to retreat until he could again impose a temporary stalemate with the assistance of powerful �eld forti�cations. A modern example can be found in the Soviet offensive relieving Leningrad in 1943. Another was the Allied break-out from the Normandy beachhead in July and August of 1944.

The exact meaning of this verity is tricky to determine, as the phrase “willing to pay the price� does a lot of work here. History is certainly replete with examples of Phyrric victories, where the cost paid for battlefield success deprived the attacker of any clear benefit. (The U.S. Civil War Battle of Chickamauga in 1863 would be an example in line with Dupuy’s description above.) Perhaps “willing and able to pay the price� would have been a better of way stating this. And, of course, no attack is guaranteed to succeed.

What Dupuy had in mind here is probably best understood in the context of two other of his verities “Offensive action is essential to positive combat results� and “Initiative permits application of preponderant combat power.� Even if the defensive may be the stronger form of combat, the offensive affords certain inherent potential advantages that can enable attackers to defeat the strongest of defenses if conducted effectively, sufficiently resourced, and determinedly pressed.

Some Useful Resources for Post-World War II U.S. Army Doctrine Development

Some Useful Resources for Post-World War II U.S. Army Doctrine Development

This list originated in response to a Twitter query discussing the history of post-World War II U.S. Army doctrine development. It is hardly exhaustive but it does include titles and resources that may not be widely known.

The first two are books:

Benjamin Jensen, Forging the Sword: Doctrinal Change in the U.S. Army (Stanford University Press, 2016)

Jensen focused on the institutional processes shaping the Army’s continual post-war World War II efforts to reform its doctrine in response to changes in the character of modern warfare.

Shimon Naveh, In Pursuit of Military Excellence: The Evolution of Operational Theory (Routledge, 1997)

In an excellent overview of the evolution of operational thought through the 20th century, Naveh devoted two chapters to the Army’s transition to Active Defense in the 70s and then to AirLand Battle in the 80s.

There are several interesting monographs that are available online:

Andrew J. Bacevich, The Pentomic Era: The U.S. Army Between Korea and Vietnam (NDU Press, 1986)

Paul Herbert, Deciding What Has to Be Done: General William E. DePuy and the 1976 Edition of FM 100-5, Operations (Combat Studies Institute, 1988)

John Romjue, From Active Defense to AirLand Battle: the Development of Army Doctrine 1973-1982 (TRADOC, 1984)

John Romjue, The Army of Excellence: The Development of the 1980s Army (TRADOC, 1997)

John Romjue, American Army Doctrine for the Post-Cold War (TRADOC, 1997)

A really useful place to browse is the Army Command and General Staff College’s online Skelton Combined Arms Research Library (CARL). It is loaded with old manuals and student papers and theses addressing a wide variety of topics related to the nuts and bolts of doctrine.

Another good place to browse is the Defense Technical Information Center (DTIC), which is a huge digital library of government sponsored research. I recommend searches on publications by the Army’s defunct operations research organizations: Operations Research Office (ORO), Research Analysis Corporation (RAC), and the Special Operations Research Office (SORO). The Combat Operations Research Group (CORG), particularly a series of studies of Army force structure from squads to theater HQ’s by Virgil Ney. There is much more to find in DTIC.

Two other excellent places to browse for material on doctrine are the Combat Studies Institute Press publications on CARL and the U.S. Army Center of Military History’s publications.

Some journals with useful research include the Journal of Cold War Studies and the Journal of Strategic Studies.

If anyone else has suggestions, let me know.

Has The Army Given Up On Counterinsurgency Research, Again?

Has The Army Given Up On Counterinsurgency Research, Again?

Mind-the-Gap

[In light of the U.S. Army’s recent publication of a history of it’s involvement in Iraq from 2003 to 2011, it may be relevant to re-post this piece from from 29 June 2016.]

As Chris Lawrence mentioned yesterday, retired Brigadier General John Hanley’s review of America’s Modern Wars in the current edition of Military Review concluded by pointing out the importance of a solid empirical basis for staff planning support for reliable military decision-making. This notion seems so obvious as to be a truism, but in reality, the U.S. Army has demonstrated no serious interest in remedying the weaknesses or gaps in the base of knowledge underpinning its basic concepts and doctrine.

In 2012, Major James A. Zanella published a monograph for the School of Advanced Military Studies of the U.S. Army Command and General Staff College (graduates of which are known informally as “Jedi Knights�), which examined problems the Army has had with estimating force requirements, particularly in recent stability and counterinsurgency efforts.

Historically, the United States military has had difficulty articulating and justifying force requirements to civilian decision makers. Since at least 1975, governmental officials and civilian analysts have consistently criticized the military for inadequate planning and execution. Most recently, the wars in Afghanistan and Iraq reinvigorated the debate over the proper identification of force requirements…Because Army planners have failed numerous times to provide force estimates acceptable to the President, the question arises, why are the planning methods inadequate and why have they not been improved?[1]

Zanella surveyed the various available Army planning tools and methodologies for determining force requirements, but found them all either inappropriate or only marginally applicable, or unsupported by any real-world data. He concluded

Considering the limitations of Army force planning methods, it is fair to conclude that Army force estimates have failed to persuade civilian decision-makers because the advice is not supported by a consistent valid method for estimating the force requirements… What is clear is that the current methods have utility when dealing with military situations that mirror the conditions represented by each model. In the contemporary military operating environment, the doctrinal models no longer fit.[2]

Zanella did identify the existence of recent, relevant empirical studies on manpower and counterinsurgency. He noted that “the existing doctrine on force requirements does not benefit from recent research� but suggested optimistically that it could provide “the Army with new tools to reinvigorate the discussion of troops-to-task calculations.�[3] Even before Zanella published his monograph, however, the Defense Department began removing any detailed reference or discussion about force requirements in counterinsurgency from Army and Joint doctrinal publications.

As Zanella discussed, there is a body of recent empirical research on manpower and counterinsurgency that contains a variety of valid and useful insights, but as I recently discussed, it does not yet offer definitive conclusions. Much more research and analysis is needed before the conclusions can be counted on as a valid and justifiably reliable basis for life and death decision-making. Yet, the last of these government sponsored studies was completed in 2010. Neither the Army nor any other organization in the U.S. government has funded any follow-on work on this subject and none appears forthcoming. This boom-or-bust pattern is nothing new, but the failure to do anything about it is becoming less and less understandable.

NOTES

[1] Major James A. Zanella, “Combat Power Analysis is Combat Power Density� (Ft. Leavenworth, KS: School of Advanced Military Studies, U.S. Army Command and General Staff College, 2012), pp. 1-2.

[2] Ibid, 50.

[3] Ibid, 47.

Historians and the Early Era of U.S. Army Operations Research

Historians and the Early Era of U.S. Army Operations Research

While perusing Charles Shrader’s fascinating history of the U.S. Army’s experience with operations research (OR), I came across several references to the part played by historians and historical analysis in early era of that effort.

The ground forces were the last branch of the Army to incorporate OR into their efforts during World War II, lagging behind the Army Air Forces, the technical services, and the Navy. Where the Army was a step ahead, however, was in creating a robust wartime historical field history documentation program. (After the war, this enabled the publication of the U.S. Army in World War II series, known as the “Green Books,� which set a new standard for government sponsored military histories.)

As Shrader related, the first OR personnel the Army deployed forward in 1944-45 often crossed paths with War Department General Staff Historical Branch field historian detachments. They both engaged in similar activities: collecting data on real-world combat operations, which was then analyzed and used for studies and reports written for the use of the commands to which they were assigned. The only significant difference was in their respective methodologies, with the historians using historical methods and the OR analysts using mathematical and scientific tools.

History and OR after World War II

The usefulness of historical approaches to collecting operational data did not go unnoticed by the OR practitioners, according to Shrader. When the Army established the Operations Research Office (ORO) in 1948, it hired a contingent of historians specifically for the purpose of facilitating research and analysis using WWII Army records, “the most likely source for data on operational matters.�

When the Korean War broke out in 1950, ORO sent eight multi-disciplinary teams, including the historians, to collect operational data and provide analytical support for U.S. By 1953, half of ORO’s personnel had spent time in combat zones. Throughout the 1950s, about 40-43% of ORO’s staff was comprised of specialists in the social sciences, history, business, literature, and law. Shrader quoted one leading ORO analyst as noting that, “there is reason to believe that the lawyer, social scientist or historian is better equipped professionally to evaluate evidence which is derived from the mind and experience of the human species.�

Among the notable historians who worked at or with ORO was Dr. Hugh M. Cole, an Army officer who had served as a staff historian for General George Patton during World War II. Cole rose to become a senior manager at ORO and later served as vice-president and president of ORO’s successor, the Research Analysis Corporation (RAC). Cole brought in WWII colleague Forrest C. Pogue (best known as the biographer of General George C. Marshall) and Charles B. MacDonald. ORO also employed another WWII field historian, the controversial S. L. A. Marshall, as a consultant during the Korean War. Dorothy Kneeland Clark did pioneering historical analysis on combat phenomena while at ORO.

The Demise of ORO…and Historical Combat Analysis?

By the late 1950s, considerable institutional friction had developed between ORO, the Johns Hopkins University (JHU)—ORO’s institutional owner—and the Army. According to Shrader,

Continued distrust of operations analysts by Army personnel, questions about the timeliness and focus of ORO studies, the ever-expanding scope of ORO interests, and, above all, [ORO director] Ellis Johnson’s irascible personality caused tensions that led in August 1961 to the cancellation of the Army’s contract with JHU and the replacement of ORO with a new, independent research organization, the Research Analysis Corporation [RAC].

RAC inherited ORO’s research agenda and most of its personnel, but changing events and circumstances led Army OR to shift its priorities away from field collection and empirical research on operational combat data in favor of the use of modeling and wargaming in its analyses. As Chris Lawrence described in his history of federally-funded Defense Department “think tanks,” the rise and fall of scientific management in DOD, the Vietnam War, social and congressional criticism, and an unhappiness by the military services with the analysis led to retrenchment in military OR by the end of the 60s. The Army sold RAC and created its own in-house Concepts Analysis Agency (CAA; now known as the Center for Army Analysis).

By the early 1970s, analysts, such as RAND’s Martin Shubik and Gary Brewer, and John Stockfisch, began to note that the relationships and processes being modeled in the Army’s combat simulations were not based on real-world data and that empirical research on combat phenomena by the Army OR community had languished. In 1991, Paul Davis and Donald Blumenthal gave this problem a name: the “Base of Sand.”

Afghan Security Forces Deaths Top 45,000 Since 2014

Afghan Security Forces Deaths Top 45,000 Since 2014

The President of Afghanistan, Ashraf Ghani, speaking with CNN’s Farid Zakiria, at the World Economic Forum in Davos, Switzerland, 25 January 2019. [Office of the President, Islamic Republic of Afghanistan]

Last Friday, at the World Economic Forum in Davos, Switzerland, Afghan President Ashraf Ghani admitted that his country’s security forces had suffered over 45,000 fatalities since he took office in September 2014. This total far exceeds the total of 28,000 killed since 2015 that Ghani had previously announced in November 2018. Ghani’s cryptic comment in Davos did not indicate how the newly revealed total relates to previously released figures, whether it was based on new accounting, a sharp increase in recent casualties, or more forthrightness.

This revised figure casts significant doubt on the validity of analysis based on the previous reporting. Correcting it will be difficult. At the request of the Afghan government in May 2017, the U.S. military has treated security forces attrition and loss data as classified and has withheld it from public release.

If Ghani’s figure is, in fact, accurate, then it reinforces the observation that the course of the conflict is tilting increasingly against the Afghan government.

 

Forecasting the Iraqi Insurgency

Forecasting the Iraqi Insurgency

Photo by Stephen Jaffe/AFP/Getty Images

Photo by Stephen Jaffe/AFP/Getty Images

[This piece was originally posted on 27 June 2016.]

Previous posts have detailed casualty estimates by Trevor Dupuy or The Dupuy Institute (TDI) for the 1990-91 Gulf War and the 1995 intervention in Bosnia. Today I will detail TDI’s 2004 forecast for U.S. casualties in the Iraqi insurgency that began in 2003.

In April 2004, as simultaneous Sunni and Shi’a uprisings dramatically expanded the nascent insurgency in Iraq, the U.S. Army Center for Army Analysis (CAA) accepted an unsolicited proposal from TDI President and Executive Director Christopher Lawrence to estimate likely American casualties in the conflict. A four-month contract was finalized in August.

The methodology TDI adopted for the estimate was a comparative case study analysis based on a major data collection effort on insurgencies. 28 cases were selected for analysis based on five criteria:

  1. The conflict had to be post-World War II to facilitate data collection;
  2. It had to have lasted more than a year (as was already the case in Iraq);
  3. It had to be a developed nation intervening in a developing nation;
  4. The intervening nation had to have provided military forces to support or establish an indigenous government; and
  5. There had to be an indigenous guerilla movement (although it could have received outside help).

Extensive data was collected from these 28 cases, including the following ten factors used in the estimate:

  • Country Area
  • Orderliness
  • Population
  • Intervening force size
  • Border Length
  • Insurgency force size
  • Outside support
  • Casualty rate
  • Political concept
  • Force ratios

Initial analysis compared this data to insurgency outcomes, which revealed some startlingly clear patterns suggesting cause and effect relationships. From this analysis, TDI drew the following conclusions:

  • It is difficult to control large countries.
  • It is difficult to control large populations.
  • It is difficult to control an extended land border.
  • Limited outside support does not doom an insurgency.
  • “Disorderlyâ€� insurgencies are very intractable and often successful insurgencies.
  • Insurgencies with large intervening third-party counterinsurgent forces (above 95,000) often succeed.
  • Higher combat intensities do not doom an insurgency.

In all, TDI assessed that the Iraqi insurgency fell into the worst category in nine of the ten factors analyzed. The outcome would hinge on one fundamental question: was the U.S. facing a regional, factional insurgency in Iraq or a widespread anti-intervention insurgency? Based on the data, if the insurgency was factional or regional, it would fail. If it became a nationalist revolt against a foreign power, it would succeed.

Based on the data and its analytical conclusions, TDI provided CAA with an initial estimate in December 2004, and a final version in January 2005:

  • Insurgent force strength is probably between 20,000–60,000.
  • This is a major insurgency.
    • It is of medium intensity.
  • It is a regional or factionalized insurgency and must remain that way.
  • U.S. commitment can be expected to be relatively steady throughout this insurgency and will not be quickly replaced by indigenous forces.
  • It will last around 10 or so years.
  • It may cost the U.S. 5,000 to 10,000 killed.
    • It may be higher.
    • This assumes no major new problems in the Shiite majority areas.

When TDI made its estimate in December 2004, the conflict had already lasted 21 months, and U.S. casualties were 1,335 killed, 1,038 of them in combat.

When U.S. forces withdrew from Iraq in December 2011, the war had gone on for 105 months (8.7 years), and U.S. casualties had risen to 4,485 fatalities—3,436 in combat. The United Kingdom lost 180 troops killed and Coalition allies lost 139. There were at least 468 contractor deaths from a mix of nationalities. The Iraqi Army and police suffered at least 10,125 deaths. Total counterinsurgent fatalities numbered at least 15,397.

As of this date, the conflict in Iraq that began in 2003 remains ongoing.

NOTES

Christopher A. Lawrence, America’s Modern Wars: Understanding Iraq, Afghanistan and Vietnam (Philadelphia, PA: Casemate, 2015) pp. 11-31; Appendix I.

U.S. Army Releases New Iraq War History

U.S. Army Releases New Iraq War History

On Thursday, the U.S. Army released a long-awaited history of its operational combat experience in Iraq from 2003 to 2011. The study, titled The U.S. Army in the Iraq War – Volume 1: Invasion – Insurgency – Civil War, 2003-2006 and The U.S. Army in the Iraq War – Volume 2: Surge and Withdrawal, 2007-2011, was published under the auspices of the U.S. Army War College’s Strategic Studies Institute.

This reflects its unconventional origins. Under normal circumstances, such work would be undertaken by either the U.S. Army Combat Studies Institute (CSI), which is charged with writing quick-turnaround “instant histories,” or the U.S. Army Center of Military History (CMH), which writes more deeply researched “official history,” years or decades after the fact.[1] Instead, these volumes were directly commissioned by then-Chief of the Staff of the Army, General Raymond Odierno, who created an Iraq Study Group in 2013 to research and write them. According to Odierno, his intent was “to capture key lessons, insights, and innovations from our more than 8 years of conflict in that country.[I]t was time to conduct an initial examination of the Army’s experiences in the post-9/11 wars, to determine their implications for our future operations, strategy, doctrine, force structure, and institutions.”

CSI had already started writing contemporary histories of the conflict, publishing On Point: The United States Army in Operation IRAQI FREEDOM (2004) and On Point II: Transition to the New Campaign (2008), which covered the period from 2003 to January 2005. A projected third volume was advertised, but never published.

Although the Iraq Study Group completed its work in June 2016 and the first volume of the history was scheduled for publication that October, its release was delayed due to concerns within the Army historical community regarding the its perspective and controversial conclusions. After external reviewers deemed the study fair and recommended its publication, claims were lodged after its existence was made public last autumn that the Army was suppressing it to avoid embarrassment. Making clear that the study was not an official history publication, current Army Chief of Staff General Mark Milley added his own forward to Odierno’s, and publicly released the two volumes yesterday.

NOTES

[1] For a discussion of the roles and mission of CSI and CMH with regard to history, see W. Shane Story, “Transformation or Troop Strength? Early Accounts of the Invasion of Iraqâ€� Army History, Winter 2006; Richard W. Stewart, “‘Instant’ History and History: A Hierarchy of Needsâ€� Army History, Winter 2006; Jeffrey J. Clarke, “The Care and Feeding of Contemporary History,â€� Army History, Winter 2006; and Gregory Fontenot, “The U.S. Army and Contemporary Military History,” Army History, Spring 2008.

 

Active Defense, Forward Defense, and A2/AD in Eastern Europe

Active Defense, Forward Defense, and A2/AD in Eastern Europe

The current military and anti-access/area denial situation in Eastern Europe. [Map and overlay derived from situation map by Thomas C. Thielen (@noclador) https://twitter.com/noclador/status/1079999716333703168; and Ian Williams, “The Russia – NATO A2AD Environment,” Missile Threat, Center for Strategic and International Studies, published January 3, 2017, last modified November 29, 2018, https://missilethreat.csis.org/russia-nato-a2ad-environment/]

In an article published by West Point’s Modern War Institute last month, “The US Army is Wrong on Future War,� Nathan Jennings, Amos Fox and Adam Taliaferro laid out a detailed argument that current and near-future political, strategic, and operational realities augur against the Army’s current doctrinal conceptualization for Multi-Domain Operations (MDO).

[T]he US Army is mistakenly structuring for offensive clashes of mass and scale reminiscent of 1944 while competitors like Russia and China have adapted to twenty-first-century reality. This new paradigm—which favors fait accompli acquisitions, projection from sovereign sanctuary, and indirect proxy wars—combines incremental military actions with weaponized political, informational, and economic agendas under the protection of nuclear-fires complexes to advance territorial influence…

These factors suggest, cumulatively, that the advantage in military confrontation between great powers has decisively shifted to those that combine strategic offense with tactical defense.

As a consequence, the authors suggested that “the US Army should recognize the evolved character of modern warfare and embrace strategies that establish forward positions of advantage in contested areas like Eastern Europe and the South China Sea. This means reorganizing its current maneuver-centric structure into a fires-dominant force with robust capacity to defend in depth.�

Forward Defense, Active Defense, and AirLand Battle

To illustrate their thinking, Jennings, Fox, and Taliaferro invoked a specific historical example:

This strategic realignment should begin with adopting an approach more reminiscent of the US Army’s Active Defense doctrine of the 1970s than the vaunted AirLand Battle concept of the 1980s. While many distain (sic) Active Defense for running counter to institutional culture, it clearly recognized the primacy of the combined-arms defense in depth with supporting joint fires in the nuclear era. The concept’s elevation of the sciences of terrain and weaponry at scale—rather than today’s cult of the offense—is better suited to the current strategic environment. More importantly, this methodology would enable stated political aims to prevent adversary aggression rather than to invade their home territory.

In the article’s comments, many pushed back against reviving Active Defense thinking, which has apparently become indelibly tarred with the derisive criticism that led to its replacement by AirLand Battle in the 1980s. As the authors gently noted, much of this resistance stemmed from the perceptions of Army critics that Active Defense was passive and defensively-oriented, overly focused on firepower, and suspicions that it derived from operations research analysts reducing warfare and combat to a mathematical “battle calculus.�

While AirLand Battle has been justly lauded for enabling U.S. military success against Iraq in 1990-91 and 2003 (a third-rank, non-nuclear power it should be noted), it always elided the fundamental question of whether conventional deep strikes and operational maneuver into the territory of the Soviet Union’s Eastern European Warsaw Pact allies—and potentially the Soviet Union itself—would have triggered a nuclear response. The criticism of Active Defense similarly overlooked the basic political problem that led to the doctrine in the first place, namely, the need to provide a credible conventional forward defense of West Germany. Keeping the Germans actively integrated into NATO depended upon assurances that a Soviet invasion could be resisted effectively without resorting to nuclear weapons. Indeed, the political cohesion of the NATO alliance itself rested on the contradiction between the credibility of U.S. assurances that it would defend Western Europe with nuclear weapons if necessary and the fears of alliance members that losing a battle for West Germany would make that necessity a reality.

Forward Defense in Eastern Europe

A cursory look at the current military situation in Eastern Europe along with Russia’s increasingly robust anti-access/area denial (A2/AD) capabilities (see map) should clearly illustrate the logic behind a doctrine of forward defense. U.S. and NATO troops based in Western Europe would have to run a gauntlet of well protected long-range fires systems just to get into battle in Ukraine or the Baltics. Attempting operational maneuver at the end of lengthy and exposed logistical supply lines would seem to be dauntingly challenging. The U.S. 2nd U.S. Cavalry ABCT based in southwest Germany appears very much “lone and lonely.� It should also illustrate the difficulties in attacking the Russian A2/AD complex; an act, which Jennings, Fox, and Taliaferro remind, that would actively court a nuclear response.

In this light, Active Defense—or better—a MDO doctrine of forward defense oriented on “a fires-dominant force with robust capacity to defend in depth,� intended to “enable stated political aims to prevent adversary aggression rather than to invade their home territory,� does not really seem foolishly retrograde after all.

Wargaming Multi-Domain Battle: The Base Of Sand Problem

Wargaming Multi-Domain Battle: The Base Of Sand Problem

“JTLS Overview Movie by Rolands & Associates” [YouTube]

[This piece was originally posted on 10 April 2017.]

As the U.S. Army and U.S. Marine Corps work together to develop their joint Multi-Domain Battle concept, wargaming and simulation will play a significant role. Aspects of the construct have already been explored through the Army’s Unified Challenge, Joint Warfighting Assessment, and Austere Challenge exercises, and upcoming Unified Quest and U.S. Army, Pacific war games and exercises. U.S. Pacific Command and U.S. European Command also have simulations and exercises scheduled.

A great deal of importance has been placed on the knowledge derived from these activities. As the U.S. Army Training and Doctrine Command recently stated,

Concept analysis informed by joint and multinational learning events…will yield the capabilities required of multi-domain battle. Resulting doctrine, organization, training, materiel, leadership, personnel and facilities solutions will increase the capacity and capability of the future force while incorporating new formations and organizations.

There is, however, a problem afflicting the Defense Department’s wargames, of which the military operations research and models and simulations communities have long been aware, but have been slow to address: their models are built on a thin foundation of empirical knowledge about the phenomenon of combat. None have proven the ability to replicate real-world battle experience. This is known as the “base of sand� problem.

A Brief History of The Base of Sand

All combat models and simulations are abstracted theories of how combat works. Combat modeling in the United States began in the early 1950s as an extension of military operations research that began during World War II. Early model designers did not have large base of empirical combat data from which to derive their models. Although a start had been made during World War II and the Korean War to collect real-world battlefield data from observation and military unit records, an effort that provided useful initial insights, no systematic effort has ever been made to identify and assemble such information. In the absence of extensive empirical combat data, model designers turned instead to concepts of combat drawn from official military doctrine (usually of uncertain provenance), subject matter expertise, historians and theorists, the physical sciences, or their own best guesses.

As the U.S. government’s interest in scientific management methods blossomed in the late 1950s and 1960s, the Defense Department’s support for operations research and use of combat modeling in planning and analysis grew as well. By the early 1970s, it became evident that basic research on combat had not kept pace. A survey of existing combat models by Gary Shubik and Martin Brewer for RAND in 1972 concluded that

Basic research and knowledge is lacking. The majority of the MSGs [models, simulations and games] sampled are living off a very slender intellectual investment in fundamental knowledge…. [T]he need for basic research is so critical that if no other funding were available we would favor a plan to reduce by a significant proportion all current expenditures for MSGs and to use the saving for basic research.

In 1975, John Stockfish took a direct look at the use of data and combat models for managing decisions regarding conventional military forces for RAND. He emphatically stated that “[T]he need for better and more empirical work, including operational testing, is of such a magnitude that a major reallocating of talent from model building to fundamental empirical work is called for.�

In 1991, Paul K. Davis, an analyst for RAND, and Donald Blumenthal, a consultant to the Livermore National Laboratory, published an assessment of the state of Defense Department combat modeling. It began as a discussion between senior scientists and analysts from RAND, Livermore, and the NASA Jet Propulsion Laboratory, and the Defense Advanced Research Projects Agency (DARPA) sponsored an ensuing report, The Base of Sand Problem: A White Paper on the State of Military Combat Modeling.

Davis and Blumenthal contended

The [Defense Department] is becoming critically dependent on combat models (including simulations and war games)—even more dependent than in the past. There is considerable activity to improve model interoperability and capabilities for distributed war gaming. In contrast to this interest in model-related technology, there has been far too little interest in the substance of the models and the validity of the lessons learned from using them. In our view, the DoD does not appreciate that in many cases the models are built on a base of sand…

[T]he DoD’s approach in developing and using combat models, including simulations and war games, is fatally flawed—so flawed that it cannot be corrected with anything less than structural changes in management and concept. [Original emphasis]

As a remedy, the authors recommended that the Defense Department create an office to stimulate a national military science program. This Office of Military Science would promote and sponsor basic research on war and warfare while still relying on the military services and other agencies for most research and analysis.

Davis and Blumenthal initially drafted their white paper before the 1991 Gulf War, but the performance of the Defense Department’s models and simulations in that conflict underscored the very problems they described. Defense Department wargames during initial planning for the conflict reportedly predicted tens of thousands of U.S. combat casualties. These simulations were said to have led to major changes in U.S. Central Command’s operational plan. When the casualty estimates leaked, they caused great public consternation and inevitable Congressional hearings.

While all pre-conflict estimates of U.S. casualties in the Gulf War turned out to be too high, the Defense Department’s predictions were the most inaccurate, by several orders of magnitude. This performance, along with Davis and Blumenthal’s scathing critique, should have called the Defense Department’s entire modeling and simulation effort into question. But it did not.

The Problem Persists

The Defense Department’s current generation of models and simulations harbor the same weaknesses as the ones in use in the 1990s. Some are new iterations of old models with updated graphics and code, but using the same theoretical assumptions about combat. In most cases, no one other than the designers knows exactly what data and concepts the models are based upon. This practice is known in the technology world as black boxing. While black boxing may be an essential business practice in the competitive world of government consulting, it makes independently evaluating the validity of combat models and simulations nearly impossible. This should be of major concern because many models and simulations in use today contain known flaws.

Some, such as  Joint Theater Level Simulation (JTLS), use the Lanchester equations for calculating attrition in ground combat. However, multiple studies have shown that these equations are incapable of replicating real-world combat. British engineer Frederick W. Lanchester developed and published them in 1916 as an abstract conceptualization of aerial combat, stating himself that he did not believe they were applicable to ground combat. If Lanchester-based models cannot accurately represent historical combat, how can there be any confidence that they are realistically predicting future combat?

Others, such as the Joint Conflict And Tactical Simulation (JCATS), MAGTF Tactical Warfare System (MTWS), and Warfighters’ Simulation (WARSIM) adjudicate ground combat using probability of hit/probability of kill (pH/pK) algorithms. Corps Battle Simulation (CBS) uses pH/pK for direct fire attrition and a modified version of Lanchester for indirect fire. While these probabilities are developed from real-world weapon system proving ground data, their application in the models is combined with inputs from subjective sources, such as outputs from other combat models, which are likely not based on real-world data. Multiplying an empirically-derived figure by a judgement-based coefficient results in a judgement-based estimate, which might be accurate or it might not. No one really knows.

Potential Remedies

One way of assessing the accuracy of these models and simulations would be to test them against real-world combat data, which does exist. In theory, Defense Department models and simulations are supposed to be subjected to validation, verification, and accreditation, but in reality this is seldom, if ever, rigorously done. Combat modelers could also open the underlying theories and data behind their models and simulations for peer review.

The problem is not confined to government-sponsored research and development. In his award-winning 2004 book examining the bases for victory and defeat in battle, Military Power: Explaining Victory and Defeat in Modern Battle, analyst Stephen Biddle noted that the study of military science had been neglected in the academic world as well. “[F]or at least a generation, the study of war’s conduct has fallen between the stools of the institutional structure of modern academia and government,� he wrote.

This state of affairs seems remarkable given the enormous stakes that are being placed on the output of the Defense Department’s modeling and simulation activities. After decades of neglect, remedying this would require a dedicated commitment to sustained basic research on the military science of combat and warfare, with no promise of a tangible short-term return on investment. Yet, as Biddle pointed out, “With so much at stake, we surely must do better.�

[NOTE: The attrition methodologies used in CBS and WARSIM have been corrected since this post was originally published per comments provided by their developers.]

What Multi-Domain Operations Wargames Are You Playing? [Updated]

What Multi-Domain Operations Wargames Are You Playing? [Updated]

Source: David A. Shlapak and Michael Johnson. Reinforcing Deterrence on NATO’s Eastern Flank: Wargaming the Defense of the Baltics. Santa Monica, CA: RAND Corporation, 2016.

 

 

 

 

 

 

 

[UPDATE] We had several readers recommend games they have used or would be suitable for simulating Multi-Domain Battle and Operations (MDB/MDO) concepts. These include several classic campaign-level board wargames:

The Next War (SPI, 1976)

NATO: The Next War in Europe (Victory Games, 1983)

For tactical level combat, there is Steel Panthers: Main Battle Tank (SSI/Shrapnel Games, 1996- )

There were also a couple of naval/air oriented games:

Asian Fleet (Kokusai-Tsushin Co., Ltd. (国際通信社) 2007, 2010)

Command: Modern Air Naval Operations (Matrix Games, 2014)

Are there any others folks are using out there?


A Mystics & Statistic reader wants to know what wargames are being used to simulate and explore Multi-Domain Battle and Operations (MDB/MDO) concepts?

There is a lot of MDB/MDO wargaming going on in at all levels in the U.S. Department of Defense. Much of this appears to use existing models, simulations, and wargames, such as the U.S. Army Center for Army Analysis’s unclassified Wargaming Analysis Model (C-WAM).

Chris Lawrence recently looked at C-WAM and found that it uses a lot of traditional board wargaming elements, including methodologies for determining combat results, casualties, and breakpoints that have been found unable to replicate real-world outcomes (aka “The Base of Sand” problem).

C-WAM 1

C-WAM 2

C-WAM 3

C-WAM 4 (Breakpoints)

There is also the wargame used by RAND to look at possible scenarios for a potential Russian invasion of the Baltic States.

Wargaming the Defense of the Baltics

Wargaming at RAND

What other wargames, models, and simulations are there being used out there? Are there any commercial wargames incorporating MDB/MDO elements into their gameplay? What methodologies are being used to portray MDB/MDO effects?

TDI Friday Read: Multi-Domain Battle/Operations Doctrine

TDI Friday Read: Multi-Domain Battle/Operations Doctrine

With the December 2018 update of the U.S. Army’s Multi-Domain Operations (MDO) concept, this seems like a good time to review the evolution of doctrinal thinking about it. We will start with the event that sparked the Army’s thinking about the subject: the 2014 rocket artillery barrage fired from Russian territory that devastated Ukrainian Army forces near the village of Zelenopillya. From there we will look at the evolution of Army thinking beginning with the initial draft of an operating concept for Multi-Domain Battle (MDB) in 2017. To conclude, we will re-up two articles expressing misgivings over the manner with which these doctrinal concepts are being developed, and the direction they are taking.

The Russian Artillery Strike That Spooked The U.S. Army

Army And Marine Corps Join Forces To Define Multi-Domain Battle Concept

Army/Marine Multi-Domain Battle White Paper Available

What Would An Army Optimized For Multi-Domain Battle Look Like?

Sketching Out Multi-Domain Battle Operational Doctrine

U.S. Army Updates Draft Multi-Domain Battle Operating Concept

U.S. Army Multi-Domain Operations Concept Continues Evolving

U.S. Army Doctrine and Future Warfare

 

Quantifying the Holocaust

Quantifying the Holocaust

Odilo Globocnik, SS and Police Leader in the Lublin district of the General Government territory in German-occupied Poland, was placed in charge of Operation Reinhardt by SS Reichsführer Heinrich Himmler. [Wikipedia]

The devastation and horror of the Holocaust makes it difficult to truly wrap one’s head around its immense scale. Six million murdered Jews is a number so large that it is hard to comprehend, much less understand in detail. While there are many accounts of individual experiences, the wholesale destruction of the Nazi German documentation of their genocide has made it difficult to gauge the dynamics of their activities.

However, in a new study, Lewi Stone, Professor of Biomathematics at RMIT University in Australia, has used an obscure railroad dataset to reconstruct the size and scale of a specific action by the Germans in eastern Poland and western Ukraine in 1942. “Quantifying the Holocaust: Hyperintense kill rates during the Nazi genocide,� (Not paywalled. Yet.) published on 2 January in the journal Science Advances, uses train schedule data published in 1987 by historian Yitzhak Arad to track the geographical and temporal dimensions of some 1.7 Jews transported to the Treblinka, Belzec and Sobibor death camps in the late summer and early autumn of 1942.

This action, known as Operation Reinhardt, originated during the Wansee Conference in January 1942 as the plan to carry out Hitler’s Final Solution to exterminate Europe’s Jews. In July, Hitler “ordered all action speeded upâ€� which led to a frenzy of roundups by SS (Schutzstaffel) groups from over 400 Jewish communities in Poland and Ukraine, and transport via 500 trains to the three camps along the Polish-Soviet border. In just 100 days, 1.7 million people had been relocated and almost 1.5 million of them were murdered (“special treatment” (Sonderbehandlung)), most upon arrival at the camps. This phase of Reinhardt came to an end in November 1942 because the Nazis had run out of people to kill.

This three-month period was by far the most intensely murderous phase of the Holocaust, carried out simultaneously with the German summer military offensive that culminated in disastrous battlefield defeat at the hands of the Soviets at Stalingrad at year’s end. 500,000 Jews were killed per month, or an average of 15,000 per day. Even parsed from the overall totals, these numbers remain hard to grasp.

Stone’s research is innovative and sobering. His article can currently be downloaded in PDF format. His piece in The Conversation includes interactive online charts. He also produced a video the presents his findings chronologically and spatially:

Quantifying the Holocaust

Quantifying the Holocaust

Odilo Globocnik, SS and Police Leader in the Lublin district of the General Government territory in German-occupied Poland, was placed in charge of Operation Reinhardt by SS Reichsführer Heinrich Himmler. [Wikipedia]

The devastation and horror of the Holocaust makes it difficult to truly wrap one’s head around its immense scale. Six million murdered Jews is a number so large that it is hard to comprehend, much less understand in detail. While there are many accounts of individual experiences, the wholesale destruction of the Nazi German documentation of their genocide has made it difficult to gauge the dynamics of their activities.

However, in a new study, Lewi Stone, Professor of Biomathematics at RMIT University in Australia, has used an obscure railroad dataset to reconstruct the size and scale of a specific action by the Germans in eastern Poland and western Ukraine in 1942. “Quantifying the Holocaust: Hyperintense kill rates during the Nazi genocide,� (Not paywalled. Yet.) published on 2 January in the journal Science Advances, uses train schedule data published in 1987 by historian Yitzhak Arad to track the geographical and temporal dimensions of some 1.7 Jews transported to the Treblinka, Belzec and Sobibor death camps in the late summer and early autumn of 1942.

This action, known as Operation Reinhardt, originated during the Wansee Conference in January 1942 as the plan to carry out Hitler’s Final Solution to exterminate Europe’s Jews. In July, Hitler “ordered all action speeded upâ€� which led to a frenzy of roundups by SS (Schutzstaffel) groups from over 400 Jewish communities in Poland and Ukraine, and transport via 500 trains to the three camps along the Polish-Soviet border. In just 100 days, 1.7 million people had been relocated and almost 1.5 million of them were murdered (“special treatment” (Sonderbehandlung)), most upon arrival at the camps. This phase of Reinhardt came to an end in November 1942 because the Nazis had run out of people to kill.

This three-month period was by far the most intensely murderous phase of the Holocaust, carried out simultaneously with the German summer military offensive that culminated in disastrous battlefield defeat at the hands of the Soviets at Stalingrad at year’s end. 500,000 Jews were killed per month, or an average of 15,000 per day. Even parsed from the overall totals, these numbers remain hard to grasp.

Stone’s research is innovative and sobering. His article can currently be downloaded in PDF format. His piece in The Conversation includes interactive online charts. He also produced a video the presents his findings chronologically and spatially:

U.S. Army Doctrine and Future Warfare

U.S. Army Doctrine and Future Warfare

Pre-war U.S. Army warfighting doctrine led to fielding the M10, M18 and M36 tank destroyers to counter enemy tanks. Their relatively ineffective performance against German panzers in Europe during World War II has been seen as the result of flawed thinking about tank warfare. [Wikimedia]

Two recently published articles on current U.S. Army doctrine development and the future of warfare deserve to be widely read:

“An Army Caught in the Middle Between Luddites, Luminaries, and the Occasional Looney,�

The first, by RAND’s David Johnson, is titled “An Army Caught in the Middle Between Luddites, Luminaries, and the Occasional Looney,� published by War on the Rocks.

Johnson begins with an interesting argument:

Contrary to what it says, the Army has always been a concepts-based, rather than a doctrine-based, institution. Concepts about future war generate the requirements for capabilities to realize them… Unfortunately, the Army’s doctrinal solutions evolve in war only after the failure of its concepts in its first battles, which the Army has historically lost since the Revolutionary War.

The reason the Army fails in its first battles is because its concepts are initially — until tested in combat — a statement of how the Army “wants to fight� and rarely an analytical assessment of how it “will have to fight.�

Starting with the Army’s failure to develop its own version of “blitzkriegâ€� after World War I, Johnson identified conservative organizational politics, misreading technological advances, and a stubborn refusal to account for the capabilities of potential adversaries as common causes for the inferior battlefield weapons and warfighting methods that contributed to its impressive string of lost “first battles.â€�

Conversely, Johnson credited the Army’s novel 1980s AirLand Battle doctrine as the product of an honest assessment of potential enemy capabilities and the development of effective weapon systems that were “based on known, proven technologies that minimized the risk of major program failures.�

“The principal lesson in all of this� he concluded, “is that the U.S. military should have a clear problem that it is trying to solve to enable it to innovate, and is should realize that innovation is generally not invention.� There are “also important lessons from the U.S. Army’s renaissance in the 1970s, which also resulted in close cooperation between the Army and the Air Force to solve the shared problem of the defense of Western Europe against Soviet aggression that neither could solve independently.�

“The US Army is Wrong on Future War�

The other article, provocatively titled “The US Army is Wrong on Future War,� was published by West Point’s Modern War Institute. It was co-authored by Nathan Jennings, Amos Fox, and Adam Taliaferro, all graduates of the School of Advanced Military Studies, veterans of Iraq and Afghanistan, and currently serving U.S. Army officers.

They argue that

the US Army is mistakenly structuring for offensive clashes of mass and scale reminiscent of 1944 while competitors like Russia and China have adapted to twenty-first-century reality. This new paradigm—which favors fait accompli acquisitions, projection from sovereign sanctuary, and indirect proxy wars—combines incremental military actions with weaponized political, informational, and economic agendas under the protection of nuclear-fires complexes to advance territorial influence. The Army’s failure to conceptualize these features of the future battlefield is a dangerous mistake…

Instead, they assert that the current strategic and operational realities dictate a far different approach:

Failure to recognize the ascendancy of nuclear-based defense—with the consequent potential for only limited maneuver, as in the seventeenth century—incurs risk for expeditionary forces. Even as it idealizes Patton’s Third Army with ambiguous “multi-domain� cyber and space enhancements, the US Army’s fixation with massive counter-offensives to defeat unrealistic Russian and Chinese conquests of Europe and Asia misaligns priorities. Instead of preparing for past wars, the Army should embrace forward positional and proxy engagement within integrated political, economic, and informational strategies to seize and exploit initiative.

The factors they cite that necessitate the adoption of positional warfare include nuclear primacy; sanctuary of sovereignty; integrated fires complexes; limited fait accompli; indirect proxy wars; and political/economic warfare.

“Given these realities,� Jennings, Fox, and Taliaferro assert, “the US Army must adapt and evolve to dominate great-power confrontation in the nuclear age. As such, they recommend that the U.S. (1) adopt “an approach more reminiscent of the US Army’s Active Defense doctrine of the 1970s than the vaunted AirLand Battle concept of the 1980s,� (2) “dramatically recalibrate its approach to proxy warfare; and (3) compel “joint, interagency and multinational coordination in order to deliberately align economic, informational, and political agendas in support of military objectives.�

Future U.S. Army Doctrine: How It Wants to Fight or How It Has to Fight?

Readers will find much with which to agree or disagree in each article, but they both provide viewpoints that should supply plenty of food for thought. Taken together they take on a different context. The analysis put forth by Jenninigs, Fox, and Taliaferro can be read as fulfilling Johnson’s injunction to base doctrine on a sober assessment of the strategic and operational challenges presented by existing enemy capabilities, instead of as an aspirational concept for how the Army would prefer to fight a future war. Whether or not Jennings, et al, have accurately forecasted the future can be debated, but their critique should raise questions as to whether the Army is repeating past doctrinal development errors identified by Johnson.

Dupuy’s Verities: Fortification

Dupuy’s Verities: Fortification

The Maginot Line was a 900-mile long network of underground bunkers, tunnels and concrete retractable gun batteries. Its heaviest defenses were located along the 280-mile long border with Germany. [WikiCommons]

The sixth of Trevor Dupuy’s Timeless Verities of Combat is:

Defenders’ chances of success are directly proportional to forti�cation strength.

From Understanding War (1987):

To some modern military thinkers this is a truism needing no explanation or justi�cation. Others have asserted that prepared defenses are attractive traps to be avoided at all costs. Such assertions, however, either ignore or misread historical examples. History is so �ckle that it is dangerous for historians to use such words as “always� or “never.� Nevertheless I offer a bold counter-assertion: never in history has a defense been weakened by the availability of forti�cations; defensive works always enhance combat strength. At the very least, forti�cations will delay an attacker and add to his casualties; at best, forti�cations will enable the defender to defeat the attacker.

Anyone who suggests that breakthroughs of defensive positions in recent history demonstrate the bankruptcy of defensive posture and/or forti�cations is seriously deceiving himself and is misinterpreting modern history. One can cite as historical examples the overcoming of the Maginot Line, the Mannerheim Line, the Siegfried Line, and the Bar Lev Line, and from these examples conclude that these forti�cations failed. Such a conclusion is absolutely wrong. It is true that all of these forti�cations were overcome, but only because a powerful enemy was willing to make a massive and costly effort. (Of course, the Maginot Line was not attacked frontally in 1940; the Germans were so impressed by its defensive strength that they bypassed it, and were threatening its rear when France surrendered.) All of these forti�cations afforded time for the defenders to make new dispositions, to bring up reserves, or to mobilize. All were intended to obstruct, to permit the defenders to punish the attackers and, above all to delay; all were successful in these respects. The Bar Lev Line, furthermore, saved Israel from disastrous defeat, and became the base for a successful offensive.[p. 4]

Will field fortifications continue to enhance the combat power of land forces on future battlefields? This is an interesting question. While the character of existing types of fortifications—trenches, strongpoint, and bunkers—might change, seeking cover and concealment from the earth might become even more important.

Dr. Alexander Kott, Chief Scientist at the U.S. Army Research Laboratory, provided one perspective in a recently published paper titled “Ground Warfare in 2050: How It Might Look.� In it, Kott speculated about “tactical ground warfighting circa 2050, in a major conflict between technologically advanced peer competitors.�

Kott noted that on future battlefields dominated by sensor saturation and long-range precision fires, “Conventional entrenchments and other fortifications will become less effective when teams of intelligent munitions can maneuver into and within a trench or a bunker.â€� Light dismounted forces “will have limited, if any, protection either from antimissiles or armor (although they may be provided a degree of protection by armor deployed by their robotic helpers… Instead, they will use cluttered ground terrain to obtain cover and concealment. In addition, they will attempt to distract and deceive…by use of decoys.â€�

Heavy forces “capable of producing strong lethal effects—substantial in size and mounted on vehicles—will be unlikely to avoid detection, observation, and fires.� To mitigate continuous incoming precision fires, Kott envisions that heavy ground forces will employ a combination of cover and concealment, maneuver, dispersion, decoys, vigorous counter-ISR (intelligence, surveillance, and reconnaissance) attacks, and armor, but will rely primarily “on extensive use of intelligent antimissiles (evolutions of today’s Active Protection Systems [APSs], Counter Rocket, Artillery, and Mortar [C-RAM], Iron Dome, etc.)�

Conversely, Kott does not foresee underground cover and concealment disappearing from future battlefields. “To gain protection from intelligent munitions, extended subterranean tunnels and facilities will become important. This in turn will necessitate the tunnel-digging robotic machines, suitably equipped for battlefield mobility.� Not only will “large static assets such as supply dumps or munitions repair and manufacturing shops� be moved underground, but maneuver forces and field headquarters might conceivably rapidly dig themselves into below-ground fighting positions between operational bounds.

Comparing Force Ratios to Casualty Exchange Ratios

Comparing Force Ratios to Casualty Exchange Ratios

“American Marines in Belleau Wood (1918)” by Georges Scott [Wikipedia]

Comparing Force Ratios to Casualty Exchange Ratios
Christopher A. Lawrence

[The article below is reprinted from the Summer 2009 edition of The International TNDM Newsletter.]

There are three versions of force ratio versus casualty exchange ratio rules, such as the three-to-one rule (3-to-1 rule), as it applies to casualties. The earliest version of the rule as it relates to casualties that we have been able to �nd comes from the 1958 version of the U.S. Army Maneuver Control manual, which states: “When opposing forces are in contact, casualties are assessed in inverse ratio to combat power. For friendly forces advancing with a combat power superiority of 5 to 1, losses to friendly forces will be about 1/5 of those suffered by the opposing force.�[1]

The RAND version of the rule (1992) states that: “the famous ‘3:1 rule ’, according to which the attacker and defender suffer equal fractional loss rates at a 3:1 force ratio the battle is in mixed terrain and the defender enjoys ‘prepared ’defenses…” [2]

Finally, there is a version of the rule that dates from the 1967 Maneuver Control manual that only applies to armor that shows:

As the RAND construct also applies to equipment losses, then this formulation is directly comparable to the RAND construct.

Therefore, we have three basic versions of the 3-to-1 rule as it applies to casualties and/or equipment losses. First, there is a rule that states that there is an even fractional loss ratio at 3-to-1 (the RAND version), Second, there is a rule that states that at 3-to-1, the attacker will suffer one-third the losses of the defender. And third, there is a rule that states that at 3-to-1, the attacker and defender will suffer the same losses as the defender. Furthermore, these examples are highly contradictory, with either the attacker suffering three times the losses of the defender, the attacker suffering the same losses as the defender, or the attacker suffering 1/3 the losses of the defender.

Therefore, what we will examine here is the relationship between force ratios and exchange ratios. In this case, we will �rst look at The Dupuy Institute’s Battles Database (BaDB), which covers 243 battles from 1600 to 1900. We will chart on the y-axis the force ratio as measured by a count of the number of people on each side of the forces deployed for battle. The force ratio is the number of attackers divided by the number of defenders. On the x-axis is the exchange ratio, which is a measured by a count of the number of people on each side who were killed, wounded, missing or captured during that battle. It does not include disease and non-battle injuries. Again, it is calculated by dividing the total attacker casualties by the total defender casualties. The results are provided below:

As can be seen, there are a few extreme outliers among these 243 data points. The most extreme, the Battle of Tippennuir (l Sep 1644), in which an English Royalist force under Montrose routed an attack by Scottish Covenanter militia, causing about 3,000 casualties to the Scots in exchange for a single (allegedly self-inflicted) casualty to the Royalists, was removed from the chart. This 3,000-to-1 loss ratio was deemed too great an outlier to be of value in the analysis.

As it is, the vast majority of cases are clumped down into the corner of the graph with only a few scattered data points outside of that clumping. If one did try to establish some form of curvilinear relationship, one would end up drawing a hyperbola. It is worthwhile to look inside that clump of data to see what it shows. Therefore, we will look at the graph truncated so as to show only force ratios at or below 20-to-1 and exchange rations at or below 20-to-1.

Again, the data remains clustered in one corner with the outlying data points again pointing to a hyperbola as the only real �tting curvilinear relationship. Let’s look at little deeper into the data by truncating the data on 6-to-1 for both force ratios and exchange ratios. As can be seen, if the RAND version of the 3-to-1 rule is correct, then the data should show at 3-to-1 force ratio a 3-to-1 casualty exchange ratio. There is only one data point that comes close to this out of the 243 points we examined.

If the FM 105-5 version of the rule as it applies to armor is correct, then the data should show that at 3-to-1 force ratio there is a 1-to-1 casualty exchange ratio, at a 4-to-1 force ratio a 1-to-2 casualty exchange ratio, and at a 5-to-1 force ratio a 1-to-3 casualty exchange ratio. Of course, there is no armor in these pre-WW I engagements, but again no such exchange pattern does appear.

If the 1958 version of the FM 105-5 rule as it applies to casualties is correct, then the data should show that at a 3-to-1 force ratio there is 0.33-to-1 casualty exchange ratio, at a 4-to-1 force ratio a .25-to-1 casualty exchange ratio, and at a 5-to-1 force ratio a 0.20-to-5 casualty exchange ratio. As can be seen, there is not much indication of this pattern, or for that matter any of the three patterns.

Still, such a construct may not be relevant to data before 1900. For example, Lanchester claimed in 1914 in Chapter V, “The Principal of Concentration,� of his book Aircraft in Warfare, that there is greater advantage to be gained in modern warfare from concentration of �re.[3] Therefore, we will tap our more modern Division-Level Engagement Database (DLEDB) of 675 engagements, of which 628 have force ratios and exchange ratios calculated for them. These 628 cases are then placed on a scattergram to see if we can detect any similar patterns.

Even though this data covers from 1904 to 1991, with the vast majority of the data coming from engagements after 1940, one again sees the same pattern as with the data from 1600-1900. If there is a curvilinear relationship, it is again a hyperbola. As before, it is useful to look into the mass of data clustered into the corner by truncating the force and exchange ratios at 20-to-1. This produces the following:

Again, one sees the data clustered in the corner, with any curvilinear relationship again being a hyperbola. A look at the data further truncated to a 10-to-1 force or exchange ratio does not yield anything more revealing.

And, if this data is truncated to show only 5-to-1 force ratio and exchange ratios, one again sees:

Again, this data appears to be mostly just noise, with no clear patterns here that support any of the three constructs. In the case of the RAND version of the 3-to-1 rule, there is again only one data point (out of 628) that is anywhere close to the crossover point (even fractional exchange rate) that RAND postulates. In fact, it almost looks like the data conspires to make sure it leaves a noticeable “hole� at that point. The other postulated versions of the 3-to-1 rules are also given no support in these charts.

Also of note, that the relationship between force ratios and exchange ratios does not appear to signi�cantly change for combat during 1600-1900 when compared to the data from combat from 1904-1991. This does not provide much support for the intellectual construct developed by Lanchester to argue for his N-square law.

While we can attempt to torture the data to �nd a better �t, or can try to argue that the patterns are obscured by various factors that have not been considered, we do not believe that such a clear pattern and relationship exists. More advanced mathematical methods may show such a pattern, but to date such attempts have not ferreted out these alleged patterns. For example, we refer the reader to Janice Fain’s article on Lanchester equations, The Dupuy Institute’s Capture Rate Study, Phase I & II, or any number of other studies that have looked at Lanchester.[4]

The fundamental problem is that there does not appear to be a direct cause and effect between force ratios and exchange ratios. It appears to be an indirect relationship in the sense that force ratios are one of several independent variables that determine the outcome of an engagement, and the nature of that outcome helps determines the casualties. As such, there is a more complex set of interrelationships that have not yet been fully explored in any study that we know of, although it is briefly addressed in our Capture Rate Study, Phase I & II.

NOTES

[1] FM 105-5, Maneuver Control (1958), 80.

[2] Patrick Allen, “Situational Force Scoring: Accounting for Combined Arms Effects in Aggregate Combat Models,� (N-3423-NA, The RAND Corporation, Santa Monica, CA, 1992), 20.

[3] F. W. Lanchester, Aircraft in Warfare: The Dawn of the Fourth Arm (Lanchester Press Incorporated, Sunnyvale, Calif., 1995), 46-60. One notes that Lanchester provided no data to support these claims, but relied upon an intellectual argument based upon a gross misunderstanding of ancient warfare.

[4] In particular, see page 73 of Janice B. Fain, “The Lanchester Equations and Historical Warfare: An Analysis of Sixty World War II Land Engagements,� Combat Data Subscription Service (HERO, Arlington, Va., Spring 1975).

U.S. Army Multi-Domain Operations Concept Continues Evolving

U.S. Army Multi-Domain Operations Concept Continues Evolving

[Sgt. Meghan Berry, US Army/adapted by U.S. Army Modern War Institute]

The U.S. Army Training and Doctrine Command (TRADOC) released draft version 1.5 of its evolving Multi-Domain Operations (MDO) future operating concept last week. Entitled TRADOC Pamphlet 525-3-1, “The U.S. Army in Multi-Domain Operations 2028,” this iteration updates the initial Multi-Domain Battle (MDB) concept issued in October 2017.

According to U.S. Army Chief of Staff (and Chairman of the Joint Chiefs of Staff nominee) General Mark Milley, MDO Concept 1.5 is the first step in the doctrinal evolution. “It describes how U.S. Army forces, as part of the Joint Force, will militarily compete, penetrate, dis-integrate, and exploit our adversaries in the future.”

TRADOC Commander General Stuart Townsend summarized the draft concept thusly:

The U.S. Army in Multi-Domain Operations 2028 concept proposes a series of solutions to solve the problem of layered standoff. The central idea in solving this problem is the rapid and continuous integration of all domains of warfare to deter and prevail as we compete short of armed conflict. If deterrence fails, Army formations, operating as part of the Joint Force, penetrate and dis-integrate enemy anti-access and area denial systems;exploit the resulting freedom of maneuver to defeat enemy systems, formations and objectives and to achieve our own strategic objectives; and consolidate gains to force a return to competition on terms more favorable to the U.S., our allies and partners.

To achieve this, the Army must evolve our force, and our operations, around three core tenets. Calibrated force posture combines position and the ability to maneuver across strategic distances. Multi-domain formations possess the capacity, endurance and capability to access and employ capabilities across all domains to pose multiple and compounding dilemmas on the adversary. Convergence achieves the rapid and continuous integration of all domains across time, space and capabilities to overmatch the enemy. Underpinning these tenets are mission command and disciplined initiative at all warfighting echelons. (original emphasis)

For a look at the evolution of the Army and U.S. Marine Corps doctrinal thinking about multi-domain warfare since early 2017:

Army And Marine Corps Join Forces To Define Multi-Domain Battle Concept

U.S. Army Updates Draft Multi-Domain Battle Operating Concept

 
Trevor Dupuy and Technological Determinism in Digital Age Warfare

Trevor Dupuy and Technological Determinism in Digital Age Warfare

Is this the only innovation in weapons technology in history with the ability in itself to change warfare and alter the balance of power? Trevor Dupuy thought it might be. Shot IVY-MIKE, Eniwetok Atoll, 1 November 1952. [Wikimedia]

Trevor Dupuy was skeptical about the role of technology in determining outcomes in warfare. While he did believe technological innovation was crucial, he did not think that technology itself has decided success or failure on the battlefield. As he wrote posthumously in 1997,

I am a humanist, who is also convinced that technology is as important today in war as it ever was (and it has always been important), and that any national or military leader who neglects military technology does so to his peril and that of his country. But, paradoxically, perhaps to an extent even greater than ever before, the quality of military men is what wins wars and preserves nations. (emphasis added)

His conclusion was largely based upon his quantitative approach to studying military history, particularly the way humans have historically responded to the relentless trend of increasingly lethal military technology.

The Historical Relationship Between Weapon Lethality and Battle Casualty Rates

Based on a 1964 study for the U.S. Army, Dupuy identified a long-term historical relationship between increasing weapon lethality and decreasing average daily casualty rates in battle. (He summarized these findings in his book, The Evolution of Weapons and Warfare (1980). The quotes below are taken from it.)

Since antiquity, military technological development has produced weapons of ever increasing lethality. The rate of increase in lethality has grown particularly dramatically since the mid-19th century.

However, in contrast, the average daily casualty rate in combat has been in decline since 1600. With notable exceptions during the 19th century, casualty rates have continued to fall through the late 20th century. If technological innovation has produced vastly more lethal weapons, why have there been fewer average daily casualties in battle?

The primary cause, Dupuy concluded, was that humans have adapted to increasing weapon lethality by changing the way they fight. He identified three key tactical trends in the modern era that have influenced the relationship between lethality and casualties:

Technological Innovation and Organizational Assimilation

Dupuy noted that the historical correlation between weapons development and their use in combat has not been linear because the pace of integration has been largely determined by military leaders, not the rate of technological innovation. “The process of doctrinal assimilation of new weapons into compatible tactical and organizational systems has proved to be much more significant than invention of a weapon or adoption of a prototype, regardless of the dimensions of the advance in lethality.� [p. 337]

As a result, the history of warfare has been exemplified more often by a discontinuity between weapons and tactical systems than effective continuity.

During most of military history there have been marked and observable imbalances between military efforts and military results, an imbalance particularly manifested by inconclusive battles and high combat casualties. More often than not this imbalance seems to be the result of incompatibility, or incongruence, between the weapons of warfare available and the means and/or tactics employing the weapons. [p. 341]

In short, military organizations typically have not been fully effective at exploiting new weapons technology to advantage on the battlefield. Truly decisive alignment between weapons and systems for their employment has been exceptionally rare. Dupuy asserted that

There have been six important tactical systems in military history in which weapons and tactics were in obvious congruence, and which were able to achieve decisive results at small casualty costs while inflicting disproportionate numbers of casualties. These systems were:

  • the Macedonian system of Alexander the Great, ca. 340 B.C.
  • the Roman system of Scipio and Flaminius, ca. 200 B.C.
  • the Mongol system of Ghengis Khan, ca. A.D. 1200
  • the English system of Edward I, Edward III, and Henry V, ca. A.D. 1350
  • the French system of Napoleon, ca. A.D. 1800
  • the German blitzkrieg system, ca. A.D. 1940 [p. 341]

With one caveat, Dupuy could not identify any single weapon that had decisive changed warfare in of itself without a corresponding human adaptation in its use on the battlefield.

Save for the recent significant exception of strategic nuclear weapons, there have been no historical instances in which new and lethal weapons have, of themselves, altered the conduct of war or the balance of power until they have been incorporated into a new tactical system exploiting their lethality and permitting their coordination with other weapons; the full significance of this one exception is not yet clear, since the changes it has caused in warfare and the influence it has exerted on international relations have yet to be tested in war.

Until the present time, the application of sound, imaginative thinking to the problem of warfare (on either an individual or an institutional basis) has been more significant than any new weapon; such thinking is necessary to real assimilation of weaponry; it can also alter the course of human affairs without new weapons. [p. 340]

Technological Superiority and Offset Strategies

Will new technologies like robotics and artificial intelligence provide the basis for a seventh tactical system where weapons and their use align with decisive battlefield results? Maybe. If Dupuy’s analysis is accurate, however, it is more likely that future increases in weapon lethality will continue to be counterbalanced by human ingenuity in how those weapons are used, yielding indeterminate—perhaps costly and indecisive—battlefield outcomes.

Genuinely effective congruence between weapons and force employment continues to be difficult to achieve. Dupuy believed the preconditions necessary for successful technological assimilation since the mid-19th century have been a combination of conducive military leadership; effective coordination of national economic, technological-scientific, and military resources; and the opportunity to evaluate and analyze battlefield experience.

Can the U.S. meet these preconditions? That certainly seemed to be the goal of the so-called Third Offset Strategy, articulated in 2014 by the Obama administration. It called for maintaining “U.S. military superiority over capable adversaries through the development of novel capabilities and concepts.� Although the Trump administration has stopped using the term, it has made “maximizing lethality� the cornerstone of the 2018 National Defense Strategy, with increased funding for the Defense Department’s modernization priorities in FY2019 (though perhaps not in FY2020).

Dupuy’s original work on weapon lethality in the 1960s coincided with development in the U.S. of what advocates of a “revolution in military affairs� (RMA) have termed the “First Offset Strategy,� which involved the potential use of nuclear weapons to balance Soviet superiority in manpower and material. RMA proponents pointed to the lopsided victory of the U.S. and its allies over Iraq in the 1991 Gulf War as proof of the success of a “Second Offset Strategy,� which exploited U.S. precision-guided munitions, stealth, and intelligence, surveillance, and reconnaissance systems developed to counter the Soviet Army in Germany in the 1980s. Dupuy was one of the few to attribute the decisiveness of the Gulf War both to airpower and to the superior effectiveness of U.S. combat forces.

Trevor Dupuy certainly was not an anti-technology Luddite. He recognized the importance of military technological advances and the need to invest in them. But he believed that the human element has always been more important on the battlefield. Most wars in history have been fought without a clear-cut technological advantage for one side; some have been bloody and pointless, while others have been decisive for reasons other than technology. While the future is certainly unknown and past performance is not a guarantor of future results, it would be a gamble to rely on technological superiority alone to provide the margin of success in future warfare.

The Great 3-1 Rule Debate

The Great 3-1 Rule Debate

coldwarmap3[This piece was originally posted on 13 July 2016.]

Trevor Dupuy’s article cited in my previous post, “Combat Data and the 3:1 Rule,� was the final salvo in a roaring, multi-year debate between two highly regarded members of the U.S. strategic and security studies academic communities, political scientist John Mearsheimer and military analyst/polymath Joshua Epstein. Carried out primarily in the pages of the academic journal International Security, Epstein and Mearsheimer argued the validity of the 3-1 rule and other analytical models with respect the NATO/Warsaw Pact military balance in Europe in the 1980s. Epstein cited Dupuy’s empirical research in support of his criticism of Mearsheimer’s reliance on the 3-1 rule. In turn, Mearsheimer questioned Dupuy’s data and conclusions to refute Epstein. Dupuy’s article defended his research and pointed out the errors in Mearsheimer’s assertions. With the publication of Dupuy’s rebuttal, the International Security editors called a time out on the debate thread.

The Epstein/Mearsheimer debate was itself part of a larger political debate over U.S. policy toward the Soviet Union during the administration of Ronald Reagan. This interdisciplinary argument, which has since become legendary in security and strategic studies circles, drew in some of the biggest names in these fields, including Eliot Cohen, Barry Posen, the late Samuel Huntington, and Stephen Biddle. As Jeffery Friedman observed,

These debates played a prominent role in the “renaissance of security studies� because they brought together scholars with different theoretical, methodological, and professional backgrounds to push forward a cohesive line of research that had clear implications for the conduct of contemporary defense policy. Just as importantly, the debate forced scholars to engage broader, fundamental issues. Is “military power� something that can be studied using static measures like force ratios, or does it require a more dynamic analysis? How should analysts evaluate the role of doctrine, or politics, or military strategy in determining the appropriate “balance�? What role should formal modeling play in formulating defense policy? What is the place for empirical analysis, and what are the strengths and limitations of existing data?[1]

It is well worth the time to revisit the contributions to the 1980s debate. I have included a bibliography below that is not exhaustive, but is a place to start. The collapse of the Soviet Union and the end of the Cold War diminished the intensity of the debates, which simmered through the 1990s and then were obscured during the counterterrorism/ counterinsurgency conflicts of the post-9/11 era. It is possible that the challenges posed by China and Russia amidst the ongoing “hybrid� conflict in Syria and Iraq may revive interest in interrogating the bases of military analyses in the U.S and the West. It is a discussion that is long overdue and potentially quite illuminating.

NOTES

[1] Jeffery A. Friedman, “Manpower and Counterinsurgency: Empirical Foundations for Theory and Doctrine,� Security Studies 20 (2011)

BIBLIOGRAPHY

(Note: Some of these are behind paywalls, but some are available in PDF format. Mearsheimer has made many of his publications freely available here.)

John J. Mearsheimer, “Why the Soviets Can’t Win Quickly in Central Europe,” International Security, Vol. 7, No. 1 (Summer 1982)

Samuel P. Huntington, “Conventional Deterrence and Conventional Retaliation in Europe,� International Security 8, no. 3 (Winter 1983/84)

Joshua Epstein, Strategy and Force Planning (Washington, DC: Brookings, 1987)

Joshua M. Epstein, “Dynamic Analysis and the Conventional Balance in Europe,� International Security 12, no. 4 (Spring 1988)

John J. Mearsheimer, “Numbers, Strategy, and the European Balance,� International Security 12, no. 4 (Spring 1988)

Stephen Biddle, “The European Conventional Balance,� Survival 30, no. 2 (March/April 1988)

Eliot A. Cohen, “Toward Better Net Assessment: Rethinking the European Conventional Balance,International Security Vol. 13, No. 1 (Summer 1988)

Joshua M. Epstein, “The 3:1 Rule, the Adaptive Dynamic Model, and the Future of Security Studies,� International Security 13, no. 4 (Spring 1989)

John J. Mearsheimer, “Assessing the Conventional Balance,� International Security 13, no. 4 (Spring 1989)

John J. Mearsheimer, Barry R. Posen, Eliot A. Cohen, “Correspondence: Reassessing Net Assessment,� International Security 13, No. 4 (Spring 1989)

Trevor N. Dupuy, “Combat Data and the 3:1 Rule,� International Security 14, no. 1 (Summer 1989)

Stephen Biddle et al., Defense at Low Force Levels (Alexandria, VA: Institute for Defense Analyses, 1991)

Dupuy’s Verities: Initiative

Dupuy’s Verities: Initiative

German Army soldiers advance during the Third Battle of Kharkov in early 1943. This was the culmination of a counteroffensive by German Field Marshal Erich von Manstein that blunted the Soviet offensive drive following the recapture of Stalingrad in late 1942. [Photo: KonchitsyaLeto/Reddit]

The fifth of Trevor Dupuy’s Timeless Verities of Combat is:

Initiative permits application of preponderant combat power.

From Understanding War (1987):

The importance of seizing and maintaining the initiative has not declined in our times, nor will it in the future. This has been the secret of success of all of the great captains of history. It was as true of MacArthur as it was of Alexander the Great, Grant or Napoleon. Some modern Soviet theorists have suggested that this is even more important now in an era of high technology than formerly. They may be right. This has certainly been a major factor in the Israeli victories over the Arabs in all of their wars.

Given the prominent role initiative has played in warfare historically, it is curious that it is not a principle of war in its own right. However, it could be argued that it is sufficiently embedded in the principles of the offensive and maneuver that it does not need to be articulated separately. After all, the traditional means of sizing the initiative on the battlefield is through a combination of the offensive and maneuver.

Initiative is a fundamental aspect of current U.S. Army doctrine, as stated in ADP 3-0 Operations (2017):

The central idea of operations is that, as part of a joint force, Army forces seize, retain, and exploit the initiative to gain and maintain a position of relative advantage in sustained land operations to prevent conflict, shape the operational environment, and win our Nation’s wars as part of unified action.

For Dupuy, the specific connection between initiative and combat power is likely why he chose to include it as a verity in its own right. Combat power was the central concept in his theory of combat and initiative was not just the basic means of achieving a preponderance of combat power through superior force strength (i.e. numbers), but also in harnessing the effects of the circumstantial variables of combat that multiply combat power (i.e. surprise, mobility, vulnerability, combat effectiveness). It was precisely through the exploitation of this relationship between initiative and combat power that allowed inferior numbers of German and Israeli combat forces to succeed time and again in combat against superior numbers of Soviet and Arab opponents.

Using initiative to apply preponderant combat power in battle is the primary way the effects of maneuver (to “gain and maintain a position of relative advantage “) are abstracted in Dupuy’s Quantified Judgement Model (QJM)/Tactical Numerical Deterministic Model (TNDM). The QJM/TNDM itself is primarily a combat attrition adjudicator that determines combat outcomes through calculations of relative combat power. The numerical force strengths of the opposing forces engaged as determined by maneuver can be easily inputted into the QJM/TNDM and then modified by the applicable circumstantial variables of combat related to maneuver to obtain a calculation of relative combat power. As another of Dupuy’s verities states, “superior combat power always wins.”

What Does Lethality Mean In Warfare?

What Does Lethality Mean In Warfare?

In an insightful essay over at The Strategy Bridge, “Lethality: An Inquiry,� Marine Corps officer Olivia Gerard accomplishes one of the most important, yet most often overlooked, aspects of successfully thinking about and planning for war: questioning a basic assumption. She achieves this by posing a simple question: “What is lethality?�

Gerard notes that the current U.S. National Defense Strategy is predicated on lethality; as it states: “A more lethal, resilient, and rapidly innovating Joint Force, combined with a robust constellation of allies and partners, will sustain American influence and ensure favorable balances of power that safeguard the free and open international order.� She also identifies the linkage in the strategy between lethality and deterrence via a supporting statement from Deputy Secretary of Defense Patrick Shanahan: “Everything we do is geared toward one goal: maximizing lethality. A lethal force is the strongest deterrent to war.�

After pointing out that the strategy does not define the concept of lethality, Gerard responds to Shanahan’s statement by asking “why?�

She uses this as a jumping off point to examine the meaning of lethality in warfare. Starting from the traditional understanding of lethality as a tactical concept, Gerard walks through the way it has been understood historically. From this, she formulates a construct for understanding the relationship between lethality and strategy:

Organizational lethality emerges from tactical lethality that is institutionally codified. Tactical lethality is nested within organizational lethality, which is nested within strategic lethality. Plugging these terms into an implicit calculus, we can rewrite strategic lethality as the efficacy with which we can form intentional deadly relationships towards targets that can be actualized towards political ends.

To this, Gerard appends two interesting caveats: “Notice first that the organizational component becomes implicit. What remains outside, however, is the intention–a meta-intention–to form these potential deadly relationships in the first place.�

It is the second of these caveats—the intent to connect lethality to a strategic end—that informs Gerard’s conclusion. While the National Defense Strategy does not define the term, she observes that by explicitly leveraging the threat to use lethality to bolster deterrence, it supplies the necessary credibility needed to make deterrence viable. “Proclaiming lethality a core tenet, especially in a public strategic document, is the communication of the threat.�

Gerard’s exploration of lethality and her proposed framework for understanding it provide a very useful way of thinking about the way it relates to warfare. It is definitely worth your time to read.

What might be just as interesting, however, are the caveats to her construct because they encompass a lot of what is problematic about the way the U.S. military thinks—explicitly and implicitly—about tactical lethality and how it is codified into concepts of organizational lethality. (While I have touched on some of those already, Gerard gives more to reflect on. More on that later.)

Gerard also references the definition of lethality Trevor Dupuy developed for his 1964 study of historical trends in weapon lethality. While noting that his definition was too narrow for the purposes of her inquiry, the historical relationship between lethality, casualties, and dispersion on the battlefield Dupuy found in that study formed the basis for his subsequent theories of warfare and models of combat. (I will write more about those in the future as well.)

Human Factors In Warfare: Fear In A Lethal Environment

Human Factors In Warfare: Fear In A Lethal Environment

Chaplain (Capt.) Emil Kapaun (right) and Capt. Jerome A. Dolan, a medical officer with the 8th Cavalry Regiment, 1st Cavalry Division, carry an exhausted Soldier off the battlefield in Korea, early in the war. Kapaun was famous for exposing himself to enemy fire. When his battalion was overrun by a Chinese force in November 1950, rather than take an opportunity to escape, Kapaun voluntarily remained behind to minister to the wounded. In 2013, Kapaun posthumously received the Medal of Honor for his actions in the battle and later in a prisoner of war camp, where he died in May 1951. [Photo Credit: Courtesy of the U.S. Army Center of Military History]

[This piece was originally published on 27 June 2017.]

Trevor Dupuy’s theories about warfare were sometimes criticized by some who thought his scientific approach neglected the influence of the human element and chance and amounted to an attempt to reduce war to mathematical equations. Anyone who has read Dupuy’s work knows this is not, in fact, the case.

Moral and behavioral (i.e human) factors were central to Dupuy’s research and theorizing about combat. He wrote about them in detail in his books. In 1989, he presented a paper titled “The Fundamental Information Base for Modeling Human Behavior in Combat� at a symposium on combat modeling that provided a clear, succinct summary of his thinking on the topic.

He began by concurring with Carl von Clausewitz’s assertion that

[P]assion, emotion, and fear [are] the fundamental characteristics of combat… No one who has participated in combat can disagree with this Clausewitzean emphasis on passion, emotion, and fear. Without doubt, the single most distinctive and pervasive characteristic of combat is fear: fear in a lethal environment.

Despite the ubiquity of fear on the battlefield, Dupuy pointed out that there is no way to study its impact except through the historical record of combat in the real world.

We cannot replicate fear in laboratory experiments. We cannot introduce fear into field tests. We cannot create an environment of fear in training or in field exercises.

So, to study human reaction in a battlefield environment we have no choice but to go to the battlefield, not the laboratory, not the proving ground, not the training reservation. But, because of the nature of the very characteristics of combat which we want to study, we can’t study them during the battle. We can only do so retrospectively.

We have no choice but to rely on military history. This is why military history has been called the laboratory of the soldier.

He also pointed out that using military history analytically has its own pitfalls and must be handled carefully lest it be used to draw misleading or inaccurate conclusions.

I must also make clear my recognition that military history data is far from perfect, and that–even at best—it reflects the actions and interactions of unpredictable human beings. Extreme caution must be exercised when using or analyzing military history. A single historical example can be misleading for either of two reasons: (a) The data is inaccurate, or (b) The example may be true, but also be untypical.

But, when a number of respectable examples from history show consistent patterns of human behavior, then we can have confidence that behavior in accordance with the pattern is typical, and that behavior inconsistent with the pattern is either untypical, or is inaccurately represented.

He then stated very concisely the scientific basis for his method.

My approach to historical analysis is actuarial. We cannot predict the future in any single instance. But, on the basis of a large set of reliable experience data, we can predict what is likely to occur under a given set of circumstances.

Dupuy listed ten combat phenomena that he believed were directly or indirectly related to human behavior. He considered the list comprehensive, if not exhaustive.

I shall look at Dupuy’s treatment of each of these in future posts (click links above).

Simpkin on the Long-Term Effects of Firepower Dominance

Simpkin on the Long-Term Effects of Firepower Dominance

To follow on my earlier post introducing British military theorist Richard Simpkin’s foresight in detecting trends in 21st Century warfare, I offer this paragraph, which immediately followed the ones I quoted:

Briefly and in the most general terms possible, I suggest that the long-term effect of dominant �repower will be threefold. It will disperse mass in the form of a “net� of small detachments with the dual role of calling down �re and of local quasi-guerrilla action. Because of its low density, the elements of this net will be everywhere and will thus need only the mobility of the boot. It will transfer mass, structurally from the combat arms to the artillery, and in deployment from the direct �re zone (as we now understand it) to the formation and protection of mobile �re bases capable of movement at heavy-track tempo (Chapter 9). Thus the third effect will be to polarise mobility, for the manoeuvre force still required is likely to be based on the rotor. This line of thought is borne out by recent trends in Soviet thinking on the offensive. The concept of an operational manoeuvre group (OMG) which hives off raid forces against C3 and indirect �re resources is giving way to more fluid and discontinuous manoeuvre by task forces (“air-ground assault groups� found by “shock divisions�) directed onto �re bases—again of course with an operational helicopter force superimposed. [Simpkin, Race To The Swift, p. 169]

It seems to me that in the mid-1980s, Simpkin accurately predicted the emergence of modern anti-access/area denial (A2/AD) defensive systems with reasonable accuracy, as well the evolving thinking on the part of the U.S. military as to how to operate against them.

Simpkin’s vision of task forces (more closely resembling Russian/Soviet OMGs than rotary wing “air-ground assault groupsâ€� operational forces, however) employing “fluid and discontinuous manoeuvreâ€� at operational depths to attack long-range precision firebases appears similar to emerging Army thinking about future multidomain operations. (It’s likely that Douglas MacGregor’s Reconnaissance Strike Group concept more closely fits that bill.)

One thing he missed on was his belief that rotary wing helicopter combat forces would supplant armored forces as the primary deep operations combat arm. However, there is the potential possibility that drone swarms might conceivably take the place in Simpkin’s operational construct that he allotted to heliborne forces. Drones have two primary advantages over manned helicopters: they are far cheaper and they are far less vulnerable to enemy fires. With their unique capacity to blend mass and fires, drones could conceivably form the deep strike operational hammer that Simpkin saw rotary wing forces providing.

Just as interesting was Simpkin’s anticipation of the growing importance of information and electronic warfare in these environments. More on that later.

Richard Simpkin on 21st Century Trends in Mass and Firepower

Richard Simpkin on 21st Century Trends in Mass and Firepower

Anvil of “troops” vs. anvil of fire. (Richard Simpkin, Race To The Swift: Thoughts on Twenty-First Century Warfare, Brassey’s: London, 1985, p. 51)

For my money, one of the most underrated analysts and theorists of modern warfare was the late Brigadier Richard Simpkin. A retired British Army World War II veteran, Simpkin helped design the Chieftan tank in the 60s and 70s. He is best known for his series of books analyzing Soviet and Western military theory and doctrine. His magnum opus was Race To The Swift: Thoughts on Twenty-First Century Warfare, published in 1985. A brilliant blend of military history, insightful analysis of tactics and technology as well as operations and strategy, and Simpkin’s idiosyncratic wit, the observations in Race To The Swift are becoming more prescient by the year.

Some of Simpkin’s analysis has not aged well, such as the focus on the NATO/Soviet confrontation in Central Europe, and a bold prediction that rotary wing combat forces would eventually supplant tanks as the primary combat arm. However, it would be difficult to find a better historical review of the role of armored forces in modern warfare and how trends in technology, tactics, and doctrine are interacting with strategy, policy, and politics to change the character of warfare in the 21st Century.

To follow on my previous post on the interchangeability of fire (which I gleaned from Simpkin, of course), I offer this nugget on how increasing weapons lethality would affect 21st Century warfare, written from the perspective of the mid 1980s:

While accidents of ground will always provide some kind of cover, the effect of modern �repower on land force tactics is equally revolutionary. Just as we saw in Part 2 how the rotary wing may well turn force structures inside out, �repower is already turning tactical concepts inside out, by replacing the anvil of troops with an anvil of �re (Fig. 5, page 51)*. The use of combat troops at high density to hold ground or to seize it is already likely to prove highly costly, and may soon become wholly unpro�table. The interesting question is what effect the dominance of �repower will have at operational level.

One school of thought, to which many defence academics on both sides of the Atlantic subscribe, is that it will reduce mobility and bring about a return to positional warfare. The opposite view is that it will put a premium on elusiveness, increasing mobility and reducing mass. On analysis, both these opinions appear rather simplistic, mainly because they ignore the interchangeability of troops and �re…—in other words the equivalence or complementarity of the movement of troops and the massing of �re. They also underrate the part played by manned and unmanned surveillance, and by communication. Another factor, little understood by soldiers and widely ignored, is the weight of �re a modern fast jet in its strike con�guration, flying a lo-lo-lo pro�le, can put down very rapidly wherever required. With modern artillery and air support, a pair of eyes backed up by an unjammable radio and perhaps a thermal imager becomes the equivalent of at least a (company) combat team, perhaps a battle group.

Sound familiar? I will return to Simpkin’s insights in future posts, but I suggest you all snatch up a copy of Race To The Swift for yourselves.

* See above.

Interchangeability Of Fire And Multi-Domain Operations

Interchangeability Of Fire And Multi-Domain Operations

Soviet “forces and resources” chart. [Richard Simpkin, Deep Battle: The Brainchild of Marshal Tukhachevskii (Brassey’s: London, 1987) p. 254]

With the emergence of the importance of cross-domain fires in the U.S. effort to craft a joint doctrine for multi-domain operations, there is an old military concept to which developers should give greater consideration: interchangeability of fire.

This is an idea that British theorist Richard Simpkin traced back to 19th century Russian military thinking, which referred to it then as the interchangeability of shell and bayonet. Put simply, it was the view that artillery fire and infantry shock had equivalent and complimentary effects against enemy troops and could be substituted for one another as circumstances dictated on the battlefield.

The concept evolved during the development of the Russian/Soviet operational concept of “deep battle� after World War I to encompass the interchangeability of fire and maneuver. In Soviet military thought, the battlefield effects of fires and the operational maneuver of ground forces were equivalent and complementary.

This principle continues to shape contemporary Russian military doctrine and practice, which is, in turn, influencing U.S. thinking about multi-domain operations. In fact, the idea is not new to Western military thinking at all. Maneuver warfare advocates adopted the concept in the 1980s, but it never found its way into official U.S. military doctrine.

An Idea Who’s Time Has Come. Again.

So why should the U.S. military doctrine developers take another look at interchangeability now? First, the increasing variety and ubiquity of long-range precision fire capabilities is forcing them to address the changing relationship between mass and fires on multi-domain battlefields. After spending a generation waging counterinsurgency and essentially outsourcing responsibility for operational fires to the U.S. Air Force and U.S. Navy, both the U.S. Army and U.S. Marine Corps are scrambling to come to grips with the way technology is changing the character of land operations. All of the services are at the very beginning of assessing the impact of drone swarms—which are themselves interchangeable blends of mass and fires—on combat.

Second, the rapid acceptance and adoption of the idea of cross-domain fires has carried along with it an implicit acceptance of the interchangeability of the effects of kinetic and non-kinetic (i.e. information, electronic, and cyber) fires. This alone is already forcing U.S. joint military thinking to integrate effects into planning and decision-making.

The key component of interchangability is effects. Inherent in it is acceptance of the idea that combat forces have effects on the battlefield that go beyond mere physical lethality, i.e. the impact of fire or shock on a target. U.S. Army doctrine recognizes three effects of fires: destruction, neutralization, and suppression. Russian and maneuver warfare theorists hold that these same effects can be achieved through the effects of operational maneuver. The notion of interchangeability offers a very useful way of thinking about how to effectively integrate the lethality of mass and fires on future battlefields.

But Wait, Isn’t Effects Is A Four-Letter Word?

There is a big impediment to incorporating interchangeability into U.S. military thinking, however, and that is the decidedly ambivalent attitude of the U.S. land warfare services toward thinking about non-tangible effects in warfare.

As I have pointed out before, the U.S. Army (at least) has no effective way of assessing the effects of fires on combat, cross-domain or otherwise, because it has no real doctrinal methodology for calculating combat power on the battlefield. Army doctrine conceives of combat power almost exclusively in terms of capabilities and functions, not effects. In Army thinking, a combat multiplier is increased lethality in the form of additional weapons systems or combat units, not the intangible effects of operational or moral (human) factors on combat. For example, suppression may be a long-standing element in doctrine, but the Army still does not really have a clear idea of what causes it or what battlefield effects it really has.

In the wake of the 1990-91 Gulf War and the ensuing “Revolution in Military Affairs,� the U.S. Air Force led the way forward in thinking about the effects of lethality on the battlefield and how it should be leveraged to achieve strategic ends. It was the motivating service behind the development of a doctrine of “effects based operations� or EBO in the early 2000s.

However, in 2008, U.S. Joint Forces Command commander, U.S Marine General (and current Secretary of Defense) James Mattis ordered his command to no longer “use, sponsor, or export” EBO or related concepts and terms, the underlying principles of which he deemed to be “fundamentally flawed.” This effectively eliminated EBO from joint planning and doctrine. While Joint Forces Command was disbanded in 2011 and EBO thinking remains part of Air Force doctrine, Mattis’s decree pretty clearly showed what the U.S. land warfare services think about battlefield effects.

Artillery Effectiveness vs. Armor (Part 5-Summary)

Artillery Effectiveness vs. Armor (Part 5-Summary)

U.S. Army 155mm field howitzer in Normandy. [padresteve.com]

[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,� by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]

Posts in the series
Artillery Effectiveness vs. Armor (Part 1)
Artillery Effectiveness vs. Armor (Part 2-Kursk)
Artillery Effectiveness vs. Armor (Part 3-Normandy)
Artillery Effectiveness vs. Armor (Part 4-Ardennes)
Artillery Effectiveness vs. Armor (Part 5-Summary)

Table IX shows the distribution of cause of loss by type or armor vehicle. From the distribution it might be inferred that better protected armored vehicles may be less vulnerable to artillery attack. Nevertheless, the heavily armored vehicles still suffered a minimum loss of 5.6 percent due to artillery. Unfortunately the sample size for heavy tanks was very small, 18 of 980 cases or only 1.8 percent of the total.

The data are limited at this time to the seven cases.[6] Further research is necessary to expand the data sample so as to permit proper statistical analysis of the effectiveness of artillery versus tanks.

NOTES

[18] Heavy armor includes the KV-1, KV-2, Tiger, and Tiger II.

[19] Medium armor includes the T-34, Grant, Panther, and Panzer IV.

[20] Light armor includes the T-60, T-70. Stuart, armored cars, and armored personnel carriers.

Artillery Effectiveness vs. Armor (Part 4-Ardennes)

Artillery Effectiveness vs. Armor (Part 4-Ardennes)

Knocked-out Panthers in Krinkelt, Belgium, Battle of the Bulge, 17 December 1944. [worldwarphotos.info]

[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,� by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]

Posts in the series
Artillery Effectiveness vs. Armor (Part 1)
Artillery Effectiveness vs. Armor (Part 2-Kursk)
Artillery Effectiveness vs. Armor (Part 3-Normandy)
Artillery Effectiveness vs. Armor (Part 4-Ardennes)
Artillery Effectiveness vs. Armor (Part 5-Summary)

NOTES

[14] From ORS Joint Report No. 1. A total of an estimated 300 German armor vehicles were found following the battle.

[15] Data from 38th Infantry After Action Report (including “Sketch showing enemy vehicles destroyed by 38th Inf Regt. and attached units 17-20 Dec. 1944″), from 12th SS PzD strength report dated 8 December 1944, and from strengths indicated on the OKW brieï¬�ng maps for 17 December (1st [circa 0600 hours], 2d [circa 1200 hours], and 3d [circa 1800 hours] situation), 18 December (1st and 2d situation), 19 December (2d situation), 20 December (3d situation), and 21 December (2d and 3d situation).

[16] Losses include con�rmed and probable losses.

[17] Data from Combat Interview “26th Infantry Regiment at Dom Bütgenbach” and from 12th SS PzD, ibid.

Artillery Effectiveness vs. Armor (Part 3-Normandy)

Artillery Effectiveness vs. Armor (Part 3-Normandy)

The U.S. Army 333rd Field Artillery Battalion (Colored) in Normandy, July 1944 (US Army Photo/Tom Gregg)

[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,� by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]

Posts in the series
Artillery Effectiveness vs. Armor (Part 1)
Artillery Effectiveness vs. Armor (Part 2-Kursk)
Artillery Effectiveness vs. Armor (Part 3-Normandy)
Artillery Effectiveness vs. Armor (Part 4-Ardennes)
Artillery Effectiveness vs. Armor (Part 5-Summary)

NOTES

[10] From ORS Report No. 17.

[11] Five of the 13 counted as unknown were penetrated by both armor piercing shot and by infantry hollow charge weapons. There was no evidence to indicate which was the original cause of the loss.

[12] From ORS Report No. 17

[13] From ORS Report No. 15. The “Pocket” was the area west of the line Falaise-Argentan and east of the line Vassy-Gets-Domfront in Normandy that was the site in August 1944 of the beginning of the German retreat from France. The German forces were being enveloped from the north and south by Allied ground forces and were under constant, heavy air attack.

Artillery Effectiveness vs. Armor (Part 2-Kursk)

Artillery Effectiveness vs. Armor (Part 2-Kursk)

15 cm schwere Feldhaubitze 18 (15 cm s.FH 18 L/29,5)

German Army 150mm heavy field howitzer 18 L/29.5 battery. [Panzer DB/Pinterest]

[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,� by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]

Posts in the series
Artillery Effectiveness vs. Armor (Part 1)
Artillery Effectiveness vs. Armor (Part 2-Kursk)
Artillery Effectiveness vs. Armor (Part 3-Normandy)
Artillery Effectiveness vs. Armor (Part 4-Ardennes)
Artillery Effectiveness vs. Armor (Part 5-Summary)

Curiously, at Kursk, in the case where the highest percent loss was recorded, the German forces opposing the Soviet 1st Tank Army—mainly the XLVIII Panzer Corps of the Fourth Panzer Army—were supported by proportionately fewer artillery pieces (approximately 56 guns and rocket launchers per division) than the US 1st Infantry Division at Dom Bütgenbach (the equivalent of approximately 106 guns per division)[4]. Nor does it appear that the German rate of �re at Kursk was significantly higher than that of the American artillery at Dom Bütgenbach. On 20 July at Kursk, the 150mm howitzers of the 11th Panzer Division achieved a peak rate of �re of 87.21 rounds per gum. On 21 December at Dom Bütgenbach, the 155mm howitzers of the 955th Field Artillery Battalion achieved a peak rate of �re of 171.17 rounds per gun.[5]

NOTES

[4] The US artillery at Dom Bütgenbach peaked on 21 December 1944 when a total of 210 divisional and corps pieces ï¬�red over 10,000 rounds in support of the 1st Division’s 26th Infantry.

[5] Data collected on German rates of fire are fragmentary, but appear to be similar to that of the American Army in World War ll. An article on artillery rates of �re that explores the data in more detail will be forthcoming in a future issue of this newsletter. [NOTE: This article was not completed or published.]

Notes to Table I.

[8] The data were found in reports of the 1st Tank Army (Fond 299, Opis‘ 3070, Delo 226). Obvious math errors in the original document have been corrected (the total lost column did not always agree with the totals by cause). The total participated column evidently reflected the starting strength of the unit, plus replacement vehicles. “Burned'” in Soviet wartime documents usually indicated a total loss, however it appears that in this case “burned” denoted vehicles totally lost due to direct ï¬�re antitank weapons. “Breakdown” apparently included both mechanical breakdown and repairable combat damage.

[9] Note that the brigade report (Fond 3304, Opis‘ 1, Delo 24) contradicts the army report. The brigade reported that a total of 28 T-34s were lost (9 to aircraft and 19 to “artillery”) and one T-60 was destroyed by a mine. However, this report was made on 11 July, during the battle, and may not have been as precise as the later report recorded by 1st Tank Army. Furthermore, it is not as clear in the brigade report that “artillery” referred only to indirect fire HE and not simply lo both direct and indirect fire guns.

Artillery Effectiveness vs. Armor (Part 1)

Artillery Effectiveness vs. Armor (Part 1)

A U.S. M1 155mm towed artillery piece being set up for firing during the Battle of the Bulge, December 1944.

[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,� by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]

Posts in the series
Artillery Effectiveness vs. Armor (Part 1)
Artillery Effectiveness vs. Armor (Part 2)
Artillery Effectiveness vs. Armor (Part 3
Artillery Effectiveness vs. Armor (Part 4)
Artillery Effectiveness vs. Armor (Part 5)

The effectiveness of artillery against exposed personnel and other “softâ€� targets has long been accepted. Fragments and blast are deadly to those unfortunate enough to not be under cover. What has also long been accepted is the relative—if not total—immunity of armored vehicles when exposed to shell ï¬�re. In a recent memorandum, the United States Army Armor School disputed the results of tests of artillery versus tanks by stating, “…the Armor School nonconcurred with the Artillery School regarding the suppressive effects of artillery…the M-1 main battle tank cannot be destroyed by artillery…â€�

This statement may in fact be true,[1] if the advancement of armored vehicle design has greatly exceeded the advancement of artillery weapon design in the last fifty years. [Original emphasis] However, if the statement is not true, then recent research by TDI[2] into the effectiveness of artillery shell �re versus tanks in World War II may be illuminating.

The TDI search found that an average of 12.8 percent of tank and other armored vehicle losses[3] were due to artillery �re in seven eases in World War II where the cause of loss could be reliably identified. The highest percent loss due to artillery was found to be 14.8 percent in the case of the Soviet 1st Tank Army at Kursk (Table II). The lowest percent loss due to artillery was found to be 5.9 percent in the case of Dom Bütgenbach (Table VIII).

The seven cases are split almost evenly between those that show armor losses to a defender and those that show losses to an attacker. The �rst four cases (Kursk, Normandy l. Normandy ll, and the “Pocket“) are engagements in which the side for which armor losses were recorded was on the defensive. The last three cases (Ardennes, Krinkelt. and Dom Bütgenbach) are engagements in which the side for which armor losses were recorded was on the offensive.

Four of the seven eases (Normandy I, Normandy ll, the “Pocket,” and Ardennes) represent data collected by operations research personnel utilizing rigid criteria for the identification of the cause of loss. Specific causes of loss were only given when the primary destructive agent could be clearly identified. The other three cases (Kursk, Krinkelt, and Dom Bütgenbach) are based upon combat reports that—of necessity—represent less precise data collection efforts.

However, the similarity in results remains striking. The largest identi�able cause of tank loss found in the data was, predictably, high-velocity armor piercing (AP) antitank rounds. AP rounds were found to be the cause of 68.7 percent of all losses. Artillery was second, responsible for 12.8 percent of all losses. Air attack as a cause was third, accounting for 7.4 percent of the total lost. Unknown causes, which included losses due to hits from multiple weapon types as well as unidenti�ed weapons, inflicted 6.3% of the losses and ranked fourth. Other causes, which included infantry antitank weapons and mines, were responsible for 4.8% of the losses and ranked �fth.

NOTES

[1] The statement may be true, although it has an “unsinkable Titanic,” ring to it. It is much more likely that this statement is a hypothesis, rather than a truism.

[2] As pan of this article a survey of the Research Analysis Corporation’s publications list was made in an attempt to locate data from previous operations research on the subject. A single reference to the study of tank losses was found. Group 1 Alvin D. Coox and L. Van Loan Naisawald, Survey of Allied Tank Casualties in World War II, CONFIDENTIAL ORO Report T-117, 1 March 1951.

[3] The percentage loss by cause excludes vehicles lost due to mechanical breakdown or abandonment. lf these were included, they would account for 29.2 percent of the total lost. However, 271 of the 404 (67.1%) abandoned were lost in just two of the cases. These two cases (Normandy ll and the Falaise Pocket) cover the period in the Normandy Campaign when the Allies broke through the German defenses and began the pursuit across France.

Artillery Survivability In Modern Combat

Artillery Survivability In Modern Combat

The U.S. Army’s M109A6 Paladin 155 mm Self-Propelled Howitzer. [U.S. Army]

[This piece was originally published on 17 July 2017.]

Much attention is being given in the development of the U.S. joint concept of Multi-Domain Battle (MDB) to the implications of recent technological advances in long-range precision fires. It seems most of the focus is being placed on exploring the potential for cross-domain fires as a way of coping with the challenges of anti-access/area denial strategies employing long-range precision fires. Less attention appears to be given to assessing the actual combat effects of such weapons. The prevailing assumption is that because of the increasing lethality of modern weapons, battle will be bloodier than it has been in recent experience.

I have taken a look in previous posts at how the historical relationship identified by Trevor Dupuy between weapon lethality, battlefield dispersion, and casualty rates argues against this assumption with regard to personnel attrition and tank loss rates. What about artillery loss rates? Will long-range precision fires make ground-based long-range precision fire platforms themselves more vulnerable? Historical research suggests that trend was already underway before the advent of the new technology.

In 1976, Trevor Dupuy and the Historical Evaluation and Research Organization (HERO; one of TDI’s corporate ancestors) conducted a study sponsored by Sandia National Laboratory titled “Artillery Survivability in Modern War.” (PDF) The study focused on looking at historical artillery loss rates and the causes of those losses. It drew upon quantitative data from the 1973 Arab-Israel War, the Korean War, and the Eastern Front during World War II.

Conclusions

1. In the early wars of the 20th Century, towed artillery pieces were relatively invulnerable, and they were rarely severely damaged or destroyed except by very infrequent direct hits.

2. This relative invulnerability of towed artillery resulted in general lack of attention to the problems of artillery survivability through World War II.

3. The lack of effective hostile counter-artillery resources in the Korean and Vietnam wars contributed to continued lack of attention to the problem of artillery survivability, although increasingly armies (particularly the US Army) were relying on self-propelled artillery pieces.

4. Estimated Israeli loss statistics of the October 1973 War suggest that because of size and characteristics, self-propelled artillery is more vulnerable to modern counter-artillery means than was towed artillery in that and previous wars; this greater historical physical vulnerability of self-propelled weapons is consistent with recent empirical testing by the US Army.

5. The increasing physical vulnerability of modern self-propelled artillery weapons is compounded by other modern combat developments, including:

a. Improved artillery counter-battery techniques and resources;
b. Improved accuracy of air-delivered munitions;
c..increased lethality of modern artillery ammunition; and
d. Increased range of artillery and surface-to-surface missiles suitable for use against artillery.

6. Despite this greater vulnerability of self-propelled weapons, Israeli experience in the October war demonstrated that self-propelled artillery not only provides significant protection to cannoneers but also that its inherent mobility permits continued effective operation under circumstances in which towed artillery crews would be forced to seek cover, and thus be unable to fire their weapons. ‘

7. Paucity of available processed, compiled data on artillery survivability and vulnerability limits analysis and the formulation of reliable artillery loss experience tables or formulae.

8. Tentative analysis of the limited data available for this study indicates the following:

a. In “normal” deployment, percent weapon losses by standard weight classification are in the following proportions:

b. Towed artillery losses to hostile artillery (counterbattery) appear in general to very directly with battle intensity (as measured by percent personnel casualties per day), at a rate somewhat less than half of the percent personnel losses for units of army strength or greater; this is a straight-line relationship, or close to it; the stronger or more effective the hostile artillery is, the steeper the slope of the curve;

c. Towed artillery losses to all hostile anti-artillery means appears in general to vary directly with battle intensity at a rate about two-thirds of the-percent personnel losses for units of army strength or greater; the curve rises slightly more rapidly in high intensity combat than in normal or low-intensity combat; the stronger or more effective the hostile anti-artillery means (primarily air and counter-battery), the steeper the slope of the curve;

d. Self-propelled artillery losses appear to be generally consistent with towed losses, but at rates at least twice as great in comparison to battle intensity.

9. There are available in existing records of US and German forces in World war II, and US forces in the Korean and Vietnam Wars, unit records and reports that will permit the formulation of reliable artillery loss experience tables and formulae for those conflicts; these, with currently available and probably improved, data from the Arab-Israeli wars, will permit the formulation of reliable artillery loss experience tables and formulae for simulations of modern combat under current and foreseeable future conditions.

The study caveated these conclusions with the following observations:

Most of the artillery weapons in World War II were towed weapons. By the time the United States had committed small but significant numbers of self-propelled artillery pieces in Europe, German air and artillery counter-battery retaliatory capabilities had been significantly reduced. In the Korean and Vietnam wars, although most American artillery was self-propelled, the enemy had little counter-artillery capability either in the air or in artillery weapons and counter-battery techniques.

It is evident from vulnerability testing of current Army self-propelled weapons, that these weapons–while offering much more protection to cannoneers and providing tremendous advantages in mobility–are much more vulnerable to hostile action than are towed weapons, and that they are much more subject to mechanical breakdowns involving either the weapons mountings or the propulsion elements. Thus there cannot be a direct relationship between aggregated World War II data, or even aggregated Korean war or October War data, and current or future artillery configurations. On the other hand, the body of data from the October war where artillery was self-propelled is too small and too specialized by environmental and operational circumstances to serve alone as a paradigm of artillery vulnerability.

Despite the intriguing implications of this research, HERO’s proposal for follow on work was not funded. HERO only used easily accessible primary and secondary source data for the study. It noted much more primary source data was likely available but that it would require a significant research effort to compile it. (Research is always the expensive tent-pole in quantitative historical analysis. This seems to be why so little of it ever gets funded.) At the time of the study in 1976, no U.S. Army organization could identify any existing quantitative historical data or analysis on artillery losses, classified or otherwise. A cursory search on the Internet reveals no other such research as well. Like personnel attrition and tank loss rates, it would seem that artillery loss rates would be another worthwhile subject for quantitative analysis as part of the ongoing effort to develop the MDB concept.

UPDATE: Should The U.S. Army Add More Tube Artillery To It Combat Units?

UPDATE: Should The U.S. Army Add More Tube Artillery To It Combat Units?

A 155mm Paladin howitzer with 1st Battery, 10th Field Artillery, 3rd Brigade Combat Team, Task Force Liberty stands ready for a fire mission at forward operating base Gabe April 16, 2005. [U.S. Department of Defense/DVIDS]

In response to my recent post looking at the ways the U.S. is seeking to improve its long range fires capabilities, TDI received this comment via Twitter:

@barefootboomer makes a fair point. It appears that the majority of the U.S. Army’s current efforts to improve its artillery capabilities are aimed at increasing lethality and capability of individual systems, but not actually adding additional guns to the force structure.

Are Army combat units undergunned in the era of multi-domain battle? The Mobile Protected Firepower program is intended to provide additional light tanks high-caliber direct fire guns to the Infantry Brigade Combat Teams. In his recent piece at West Point’s Modern War Institute blog, Captain Brandon Morgan recommended increasing the proportion of U.S. corps rocket artillery to tube artillery systems from roughly 1:4 to something closer to the current Russian Army ratio of 3:4.

Should the Army be adding other additional direct or indirect fires systems to its combat forces? What types and at what levels? Direct or indirect fire? More tubes per battery? More batteries? More battalions?

What do you think?

UPDATE: I got a few responses to my queries. The balance reflected this view:

@barefootboomer elaborated on his original point:


There were not many specific suggestions about changes to the existing forces structure, except for this one:

Are there any other thoughts or suggestions out there about this, or is the consensus that the Army is already pretty much on the right course toward fixing its fires problems?

Status Update On U.S. Long Range Fires Capabilities

Status Update On U.S. Long Range Fires Capabilities

Soldiers fire an M777A2 howitzer while supporting Iraqi security forces near al-Qaim, Iraq, Nov. 7, 2017, as part of the operation to defeat the Islamic State of Iraq and Syria. [Spc. William Gibson/U.S. Army]

Earlier this year, I noted that the U.S. is investing in upgrading its long range strike capabilities as part of its multi-domain battle doctrinal response to improving Chinese, Russian, and Iranian anti-access/area denial (A2/AD) capabilities. There have been a few updates on the progress of those investments.

The U.S. Army Long Range Fires Cross Functional Team

A recent article in Army Times by Todd South looked at some of the changes being implemented by the U.S. Army cross functional team charged with prioritizing improvements in the service’s long range fires capabilities. To meet a requirement to double the ranges of its artillery systems within five years, “the Army has embarked upon three tiers of focus, from upgrading old school artillery cannons, to swapping out its missile system to double the distance it can fire, and giving the Army a way to fire surface-to-surface missiles at ranges of 1,400 miles.�

The Extended Range Cannon Artillery program is working on rocket assisted munitions to double the range of the Army’s workhouse 155mm guns to 24 miles, with some special rounds capable of reaching targets up to 44 miles away. As I touched on recently, the Army is also looking into ramjet rounds that could potentially increase striking range to 62 miles.

To develop the capability for even longer range fires, the Army implemented a Strategic Strike Cannon Artillery program for targets up to nearly 1,000 miles, and a Strategic Fires Missile effort enabling targeting out to 1,400 miles.

The Army is also emphasizing retaining trained artillery personnel and an improved training regime which includes large-scale joint exercises and increased live-fire opportunities.

Revised Long Range Fires Doctrine

But better technology and training are only part of the solution. U.S. Army Captain Harrison Morgan advocated doctrinal adaptations to shift Army culture away from thinking of fires solely as support for maneuver elements. Among his recommendations are:

  • Increasing the proportion of U.S. corps rocket artillery to tube artillery systems from roughly 1:4 to something closer to the current Russian Army ratio of 3:4.
  • Fielding a tube artillery system capable of meeting or surpassing the German-made PZH 2000, which can strike targets out to 30 kilometers with regular rounds, sustain a firing rate of 10 rounds per minute, and strike targets with five rounds simultaneously.
  • Focus on integrating tube and rocket artillery with a multi-domain, joint force to enable the destruction of the majority of enemy maneuver forces before friendly ground forces reach direct-fire range.
  • Allow tube artillery to be task organized below the brigade level to provide indirect fires capabilities to maneuver battalions, and make rocket artillery available to division and brigade commanders. (Morgan contends that the allocation of indirect fires capabilities to maneuver battalions ended with the disbanding of the Army’s armored cavalry regiments in 2011.)
  • Increase training in use of unmanned aerial vehicle (UAV) assets at the tactical level to locate, target, and observe fires.

U.S. Air Force and U.S. Navy Face Long Range Penetrating Strike Challenges

The Army’s emphasis on improving long range fires appears timely in light of the challenges the U.S. Air Force and U.S. Navy face in conducting long range penetrating strikes mission in the A2/AD environment. A fascinating analysis by Jerry Hendrix for the Center for a New American Security shows the current strategic problems stemming from U.S. policy decisions taken in the early 1990s following the end of the Cold War.

In an effort to generate a “peace dividend� from the fall of the Soviet Union, the Clinton administration elected to simplify the U.S. military force structure for conducting long range air attacks by relieving the Navy of its associated responsibilities and assigning the mission solely to the Air Force. The Navy no longer needed to replace its aging carrier-based medium range bombers and the Air Force pushed replacements for its aging B-52 and B-1 bombers into the future.

Both the Air Force and Navy emphasized development and acquisition of short range tactical aircraft which proved highly suitable for the regional contingencies and irregular conflicts of the 1990s and early 2000s. Impressed with U.S. capabilities displayed in those conflicts, China, Russia, and Iran invested in air defense and ballistic missile technologies specifically designed to counter American advantages.

The U.S. now faces a strategic environment where its long range strike platforms lack the range and operational and technological capability to operate within these AS/AD “bubbles.� The Air Force has far too few long range bombers with stealth capability, and neither the Air Force nor Navy tactical stealth aircraft can carry long range strike missiles. The missiles themselves lack stealth capability. The short range of the Navy’s aircraft and insufficient numbers of screening vessels leave its aircraft carriers vulnerable to ballistic missile attack.

Remedying this state of affairs will take time and major investments in new weapons and technological upgrades. However, with certain upgrades, Hendrix sees the current Air Force and Navy force structures capable of providing the basis for a long range penetrating strike operational concept effective against A2/AD defenses. The unanswered question is whether these upgrades will be implemented at all.

Looking At Recent Reported Combat Loss Rates In Afghanistan

Looking At Recent Reported Combat Loss Rates In Afghanistan

Afghan National Army soldiers simulate clearing a compound with help from their instructors at the 2nd Brigade, 205th Corps ANA Non-commissioned Officer Academy on Forward Operating Base Eagle in Zabul province Jan. 10, 2012 [{Wikimedia]

Last Friday, Rod Nordland published an article in the New York Times alleging that Afghan security forces (Afghan National Army (ANA) and police) had suffered an average of 57 killed in action (KIA) per day during the previous week, up from 22 killed per day in 2016. If true, such reports would indicate a dramatic increase in loss rates over the previous years.

These reported figures should be regarded critically, however. It is not clear how Nordland arrived at the total of 22 KIA per day for 2016. His article cited another article by Thomas Gibbons-Neff, published in the Times on 30 October 2017. This reported Afghan security forces casualties for 2016 at 6,700 KIA and 12,000 wounded in action (WIA), which works out to an average of 18.36 KIA per day (6,700/365), not 22. The total number of KIA + WIA works out to an average of 51.23 per day (18,700/365).

The lede of Gibbons-Neff’s 2017 article was that the U.S. and Afghan governments had stopped providing official strength and loss figures for the Afghan security forces. Citing the last report of the U.S. Special Inspector General for Afghanistan Reconstruction (SIGAR), Gibbons-Neff reported Afghan security forces losses from 1 January-8 May 2017 (126 days) as 2,531 KIA and 4,238 WIA. This works out to an average of 20.08 KIA (2,531/126) and 53.72 KIA + WIA (6,679/126) per day.

Nordland arrived at the figure of 57 KIA per day based on a report of 400 Afghan security forces killed in the week leading up the publication of his article on 21 September 2018. He calculated it by averaging the total over the previous seven days (400/7). Casualty rates in combat have been highly variable, historically. Brief spikes in rates are common. In the same paragraph reporting the 400 KIA total, Nordland quoted senior Afghan government officials stating that the daily average for recent months had been 30 to 40 KIA per day.

It is possible to use the figures cited by Nordland and Gibbons-Neff to make ballpark estimates for Afghan security forces casualties in 2017 and 2018. Even if the weekly loss of 400 KIA for 14-20 September 2018 represents an abnormally high total, it is reasonable to conclude that the Afghan security forces are very likely incurring sharply higher combat losses in 2018 than the previous two years. These figures do not include counts of missing or captured and thus underestimate the actual numbers of battle casualties being suffered by the Afghan forces. It is also possible that the estimates of 30-40 KIA per day apply only to the peak spring-to-autumn fighting season, which would somewhat reduce the overall 2018 KIA and WIA totals.

As Nordland reported, these losses are resulting in an increasing strain on the Afghan forces. His article stated that the strength of the ANA and police in April 2018 was 314,000, 38,000 below the authorized total of 352,000, and that the actual total was likely even lower due to fraudulent reporting and unreported desertions. The ANA suffered a monthly attrition rate of 2.9 percent in early 2017 from combat casualties, desertion, and failed reenlistments, requiring one-third of the overall force to be replaced by new recruits annually. That attrition rate is undoubtedly far higher now and almost certainly not sustainable for long.

In comparison, the Afghan government reported in August that its security forces had killed 42 Taliban fighters per day, or 1,300 per month. For the year ending in March 2018, it claimed to have killed 13,600 insurgent fighters. There has been no independent confirmation of these claims and they should be treated skeptically.

U.S. Army Mobile Protected Firepower (MPF) Program Update

U.S. Army Mobile Protected Firepower (MPF) Program Update

BAE Systems has submitted its proposal to the U.S. Army to build and test the Mobile Protected Firepower (MPF) vehicle [BAE Systems/Fox News]

When we last checked in with the U.S. Army’s Mobile Protected Firepower (MPF) program—an effort to quickly field a new light tank lightweight armored vehicle with a long-range direct fire capability—Request for Proposals (RFPs) were expected by November 2017 and the first samples by April 2018. It now appears the first MPF prototypes will not be delivered before mid-2020 at the earliest.

According to a recent report by Kris Osborn on Warrior Maven, “The service expects to award two Engineering Manufacturing and Development (EMD) deals by 2019 as part of an initial step to building prototypes from multiple vendors, service officials said. Army statement said initial prototypes are expected within 14 months of a contract award.�

Part of the delay appears to stem from uncertainty about requirements. As Osborn reported, “For the Army, the [MPF} effort involves what could be described as a dual-pronged acquisition strategy in that it seeks to leverage currently available or fast emerging technology while engineering the vehicle with an architecture such that it can integrate new weapons and systems as they emerge over time.�

Among the technologies the Army will seek to integrate into the MPF are a lightweight, heavy caliber main gun, lightweight armor composites, active protection systems, a new generation of higher-resolution targeting sensors, greater computer automation, and artificial intelligence.

Osborn noted that

the Army’s Communications Electronics Research, Development and Engineering Center (CERDEC) is already building prototype sensors – with this in mind. In particular, this early work is part of a longer-range effort to inform the Army’s emerging Next-Generation Combat Vehicle (NGCV). The NGCV, expected to become an entire fleet of armored vehicles, is now being explored as something to emerge in the late 2020s or early 2030s.

These evolving requirements are already impacting the Army’s approach to fielding MPF. It originally intended to “do acquisition differently to deliver capability quickly.� MPF program director Major General David Bassett declared in October 2017, “We expect to be delivering prototypes off of that program effort within 15 months of contract award…and getting it in the hands of an evaluation unit six months after that — rapid!“

It is now clear the Army won’t be meeting that schedule after all. Stay tuned.

“Quantity Has A Quality All Its Own”: How Robot Swarms Might Change Future Combat

“Quantity Has A Quality All Its Own”: How Robot Swarms Might Change Future Combat

Humans vs. machines in the film Matrix Revolutions (2003) [Screencap by The Matrix Wiki]

Yesterday, Paul Scharre, director of the Technology and National Security Program at the Center for a New American Security, and prolific writer on the future of robotics and artificial intelligence, posted a fascinating argument on Twitter regarding swarms and mass in future combat.

His thread was in response to an article by Shmuel Shmuel posted on War on the Rocks, which made the case that the same computer processing technology enabling robotic vehicles combined with old fashioned kinetic weapons (i.e. anti-aircraft guns) offered a cost-effective solution to swarms.

Scharre agreed that robotic drones are indeed vulnerable to such countermeasures, but made this point in response:

He then went to contend that robotic swarms offer the potential to reestablish the role of mass in future combat. Mass, either in terms of numbers of combatants or volume of firepower, has played a decisive role in most wars. As the aphorism goes, usually credited to Josef Stalin, “mass has a quality all of its own.”

Scharre observed that the United States went in a different direction in its post-World War II approach to warfare, adopting instead “offset” strategies that sought to leverage superior technology to balance against the mass militaries of the Communist bloc.

While effective during the Cold War, Scharre concurs with the arguments that offset strategies are becoming far too expensive and may ultimately become self-defeating.

In order to avoid this fate, Scharre contends that

The entire thread is well worth reading.

Trevor Dupuy would have agreed with much of what Scharre’s asserts. He identified the relationship between increasing weapon lethality and battlefield dispersion that goes back to the 17th century. Dupuy believed that the primary factor driving this relationship was the human response to fear in a lethal environment, with soldiers dispersing in depth and frontage on battlefields in order to survive weapons of ever increasing destructiveness.

TDI Friday Read: Lethality, Dispersion, And Mass On Future Battlefields

Robots might very well change that equation. Whether autonomous or “human in the loop,” robotic swarms do not feel fear and are inherently expendable. Cheaply produced robots might very well provide sufficient augmentation to human combat units to restore the primacy of mass in future warfare.

How Many Confederates Fought At Antietam?

How Many Confederates Fought At Antietam?

Dead soldiers lying near the Dunker Church on the Antietam battlefield. [History.com]

Numbers matter in war and warfare. Armies cannot function effectively without reliable counts of manpower, weapons, supplies, and losses. Wars, campaigns, and battles are waged or avoided based on assessments of relative numerical strength. Possessing superior numbers, either overall or at the decisive point, is a commonly held axiom (if not a guarantor) for success in warfare.

These numbers of war likewise inform the judgements of historians. They play a large role in shaping historical understanding of who won or lost, and why. Armies and leaders possessing a numerical advantage are expected to succeed, and thus come under exacting scrutiny when they do not. Commanders and combatants who win in spite of inferiorities in numbers are lauded as geniuses or elite fighters.

Given the importance of numbers in war and history, however, it is surprising to see how often historians treat quantitative data carelessly. All too often, for example, historical estimates of troop strength are presented uncritically and often rounded off, apparently for simplicity’s sake. Otherwise careful scholars are not immune from the casual or sloppy use of numbers.

However, just as careless treatment of qualitative historical evidence results in bad history, the same goes for mishandling quantitative data. To be sure, like any historical evidence, quantitative data can be imprecise or simply inaccurate. Thus, as with any historical evidence, it is incumbent upon historians to analyze the numbers they use with methodological rigor.

OK, with that bit of throat-clearing out of the way, let me now proceed to jump into one of the greatest quantitative morasses in military historiography: strengths and losses in the American Civil War. Participants, pundits, and scholars have been arguing endlessly over numbers since before the war ended. And since nothing seems to get folks riled up more than debating Civil War numbers than arguing about the merits (or lack thereof) of Union General George B. McClellan, I am eventually going to add him to the mix as well.

The reason I am grabbing these dual lightning rods is to illustrate the challenges of quantitative data and historical analysis by looking at one of Trevor Dupuy’s favorite historical case studies, the Battle of Antietam (or Sharpsburg, for the unreconstructed rebels lurking out there). Dupuy cited his analysis of the battle in several of his books, mainly as a way of walking readers through his Quantified Judgement Method of Analysis (QJMA), and to demonstrate his concept of combat multipliers.

I have questions about his Antietam analysis that I will address later. To begin, however, I want to look at the force strength numbers he used. On p. 156 of Numbers, Predictions and War, he provided the following figures for the opposing armies at Antietam:The sources he cited for these figures were R. Ernest Dupuy and Trevor N. Dupuy, The Compact History of the Civil War (New York: Hawthorn, 1960) and Thomas L. Livermore, Numbers and Losses of the Civil War (reprint, Bloomington: University of Indiana, 1957).

It is with Livermore that I will begin tracing the historical and historiographical mystery of how many Confederates fought at the Battle of Antietam.

Questioning The Validity Of The 3-1 Rule Of Combat

Questioning The Validity Of The 3-1 Rule Of Combat

Canadian soldiers going “over the top” during an assault in the First World War. [History.com]

[This post was originally published on 1 December 2017.]

How many troops are needed to successfully attack or defend on the battlefield? There is a long-standing rule of thumb that holds that an attacker requires a 3-1 preponderance over a defender in combat in order to win. The aphorism is so widely accepted that few have questioned whether it is actually true or not.

Trevor Dupuy challenged the validity of the 3-1 rule on empirical grounds. He could find no historical substantiation to support it. In fact, his research on the question of force ratios suggested that there was a limit to the value of numerical preponderance on the battlefield.

TDI President Chris Lawrence has also challenged the 3-1 rule in his own work on the subject.

The validity of the 3-1 rule is no mere academic question. It underpins a great deal of U.S. military policy and warfighting doctrine. Yet, the only time the matter was seriously debated was in the 1980s with reference to the problem of defending Western Europe against the threat of Soviet military invasion.

It is probably long past due to seriously challenge the validity and usefulness of the 3-1 rule again.

TDI Friday Read: Iranian Casualties In The 1980-88 Iran-Iraq War

TDI Friday Read: Iranian Casualties In The 1980-88 Iran-Iraq War

This series of posts was based on the article “Iranian Casualties in the Iran-Iraq War: A Reappraisal,� by H. W. Beuttel, originally published in the December 1997 edition of the International TNDM Newsletter. Mr Beuttel was a former U.S. Army intelligence officer employed as a military analyst by Boeing Research & Development at the time of original publication. He also authored several updates to this original article, to be posted at a later date, which refined and updated his analysis.

Iranian Casualties in the Iran-Iraq War: A Reappraisal (1)

Iranian Missing In Action From The Iran-Iraq War (2)

Iranian Prisoners Of War From The Iran-Iraq War (3)

The “Missing� Iranian Prisoners Of War From The Iran-Iraq War (4)

Iranian Killed In Action and Died of Wounds In The Iran-Iraq War (5)

Iranian Wounded In Action In The Iran-Iraq War (6)

Iranian Chemical Casualties In The Iran-Iraq War (7)

Iranian Civilian Casualties In The Iran-Iraq War (8)

A Summary Estimate Of Iranian Casualties In The Iran-Iraq War (9)

 

Dupuy’s Verities: Seek The Flanks!

Dupuy’s Verities: Seek The Flanks!

Battle of Chancellorsville by Kurz and Allison (1888). This painting depicted the wounding of Confederate General Thomas J. “Stonewall” Jackson on 2 May 1863, while leading one of the more famous flank attacks in history.

The fourth of Trevor Dupuy’s Timeless Verities of Combat is:

Flank and rear attack is more likely to succeed than frontal attack.

From Understanding War (1987):

Flank or rear attack is more likely to succeed than frontal attack. Among the many reasons for this are the following: there is greater opportunity for surprise by the attacker; the defender cannot be strong everywhere at once, and the front is the easiest focus for defensive effort; and the morale of the defender tends to be shaken when the danger of encirclement is evident. Again, historical examples are numerous, beginning with Hannibal’s tactical plans and brilliant executions of the Battles of Lake Trasimene and Cannae. Any impression that the concept of envelopment or of a “strategy of indirect approachâ€� has arisen either from the introduction of modern weapons of war, or from the ruminations of recent writers on military affairs, is a grave misperception of history and underestimates earlier military thinkers.

“Seek the flanks” has been a military adage since antiquity, but its signiï¬�cance was enhanced tremendously when the conoidal bullet of the breech-loading, rifled musket revolutionized warfare in the mid-nineteenth century. This led Moltke to his 1867 observation that the increased deadliness of ï¬�repower demanded that the strategic offensive be coupled with tactical defensive, an idea that depended upon strategic envelopment for its accomplishment. This was a basic element of Moltke‘s strategy in the 1870 campaign in France. Its tactical manifestations took place at Metz and Sedan; both instances in which the Germans took up defensive positions across the French line of communications to Paris, and the French commanders, forced to attack, were defeated.

The essential emphasis of modern tactics and operational art remains enabling flank or rear attacks on enemy forces in order to obtain decisive results in combat. Will this remain true in the future? The ongoing historical pattern of ground forces dispersing on the battlefield in response to the increasing lethality of weapons seems likely to enhance the steadily increasing non-linear and non-contiguous character of modern battles in both conventional and irregular warfare.

The architects of the U.S. multi-domain battle and operations doctrine seem to anticipate this. Highly dispersed and distributed future battlefields are likely to offer constant, multiple opportunities (and risks) for flank and rear attacks. They are also likely to scramble current efforts to shape and map future battlefield geometry and architecture.

One of the significant selling points of military gadfly Douglas Macgregor’s proposed Reconnaissance Strike Group force structure is the capability for conducting continuous 360-degree combat operations.

Curiously enough however, current U.S. Army operational doctrine has little to say about the non-linear or non-contiguous aspects of battle. On the other hand, the current U.S. joint operations doctrinal manual has an entire section to defining and describing linear and nonlinear operations.

A Summary Estimate Of Iranian Casualties In The Iran-Iraq War (9)

A Summary Estimate Of Iranian Casualties In The Iran-Iraq War (9)

[Conflict Iran]

[This post is based on “Iranian Casualties in the Iran-Iraq War: A Reappraisal,� by H. W. Beuttel, originally published in the December 1997 edition of the International TNDM Newsletter.]


Posts in this series:
Iranian Casualties in the Iran-Iraq War: A Reappraisal
Iranian Missing In Action From The Iran-Iraq War
Iranian Prisoners of War From The Iran-Iraq War
The “Missing� Iranian Prisoners of War From The Iran-Iraq War
Iranian Killed In Action And Died Of Wounds In The Iran-Iraq War
Iranian Wounded In Action In The Iran-Iraq War
Iranian Chemical Casualties In The Iran-Iraq War
Iranian Civil Casualties In The Iran-Iraq War
A Summary Estimate Of Iranian Casualties In The Iran-Iraq War


If we estimate that at least 5,000,000 troops (about 12% of Iran’s then population) served in the war zone, then the military casualty distribution is not less than the following (Bold indicates the author’s choice from ranges):

Killed in Action/Died of Wounds: 188,000 (156,000-196,000) (17%)

Wounded in Action: 945,000 (754,000-1,110,000) (83%)

Severely Wounded/Disabled: 200,000 (18%) (Note: carve out of total wounded)

Missing in Action: 73,000 (6%) (Note: Carve out of total KIA plus several thousand possible defectors/collaborators)

PoW: 39,000-44,000

Total Military Battle Casualties (KIA + WIA): 1,133,000-1,302,000 (28% theater rate)

Possible Non-Battle Military Deaths: 74,000

Non-Battle Military Injuries: No idea.

With Civilian KIA (11,000) and WIA (34,000) and “chemical� (45,000) Total Hostile Action Casualties: 1,223,000

Possible Military Non-Battle Deaths (74,000):1,297,000

Total Deaths Due to the Imposed War: 273,000 (104% of Pentagon estimate of 262,000)

 

Of 5,000,000 estimated Iranian combatants (1 million regular army, 2 million Pasdaran, 2 million Baseej)

~ 4% were Killed in Action/Missing in Action

~ 4% were Disabled

~ 13% were Wounded

~ 1% were Non-Battle Deaths

~ 1% were PoWs

Total military losses all known causes ~ 27%

 

The military battle casualty total percentile (27%) is intermediate between that of World War I (50% ~ British Army) and World War II (13% ~ U.S. Army/U.S. Marine Corps, 22% British Army).[118]

The author acknowledges the highly speculative nature of much of the data and argument presented above. It is offered as a preliminary starting point to further study. As such, the author would appreciate hearing from anyone with additional data on this subject. In particular he would invite the Government of the Islamic Republic of Iran to provide any information that would corroborate, correct or expand on the information presented in this article.

NOTES

[118] Kenneth R. Timmerman, Death Lobby: How the West Armed Iraq, New York, Houghton Mifflin Company, 1991, pp. 406-407, n. 3

The Origins Of The U.S. Army’s Concept Of Combat Power

The Origins Of The U.S. Army’s Concept Of Combat Power

The U.S. Army’s concept of combat power can be traced back to the thinking of British theorist J.F.C. Fuller, who collected his lectures and thoughts into the book, The Foundations of the Science of War (1926).

In a previous post, I critiqued the existing U.S. Army doctrinal method for calculating combat power. The ideas associated with the term “combat power� have been a part of U.S Army doctrine since the 1920s. However, the Army did not specifically define what combat power actually meant until the 1982 edition of FM 100-5 Operations, which introduced the AirLand Battle concept. So where did the Army’s notion of the concept originate? This post will trace the way it has been addressed in the capstone Field Manual (FM) 100-5 Operations series.

As then-U.S. Army Major David Boslego explained in a 1995 School of Advanced Military Studies (SAMS) thesis[1], the Army’s original idea of combat power most likely derived from the work of British military theorist J.F.C. Fuller. In the late 1910s and early 1920s, Fuller articulated the first modern definitions of the principles of war, which he developed from his conception of force on the battlefield as something more than just the tangible effects of shock and firepower. Fuller’s principles were adopted in the 1920 edition of the British Army Field Service Regulations (FSR), which was the likely vector of influence on the U.S. Army’s 1923 FSR. While the term “combat power� does not appear in the 1923 FSR, the influence of Fullerian thinking is evident.

The first use of the phrase itself by the Army can be found in the 1939 edition of FM 100-5 Tentative Field Service Regulations, Operations, which replaced and updated the 1923 FSR. It appears just twice and was not explicitly defined in the text. As Boslego noted, however, even then the use of the term

highlighted a holistic view of combat power. This power was the sum of all factors which ultimately affected the ability of the soldiers to accomplish the mission. Interestingly, the authors of the 1939 edition did not focus solely on the physical objective of destroying the enemy. Instead, they sought to break the enemy’s power of resistance which connotes moral as well as physical factors.

This basic, implied definition of combat power as a combination of interconnected tangible physical and intangible moral factors could be found in all successive editions of FM 100-5 through 1968. The type and character of the factors comprising combat power evolved along with the Army’s experience of combat through this period, however. In addition to leadership, mobility, and firepower, the 1941 edition of FM 100-5 included “better armaments and equipment,â€� which reflected the Army’s initial impressions of the early “blitzkriegâ€� battles of World War II.

From World War II Through Korea

While FM 100-5 (1944) and  FM 100-5 (1949) made no real changes with respect to describing combat power, the 1954 edition introduced significant new ideas in the wake of major combat operations in Korea, albeit still without actually defining the term. As with its predecessors, FM 100-5 (1954) posited combat power as a combination of firepower, maneuver, and leadership. For the first time, it defined the principles of mass, unity of command, maneuver, and surprise in terms of combat power. It linked the principle of the offensive, “only offensive action achieves decisive results,� with the enduring dictum that “offensive action requires the concentration of superior combat power at the decisive point and time.�

Boslego credited the authors of FM 100-5 (1954) with recognizing the non-linear nature of warfare and advising commanders to take a holistic perspective. He observed that they introduced the subtle but important understanding of combat power not as a fixed value, but as something relative and interactive between two forces in battle. Any calculation of combat power would be valid only in relation to the opposing combat force. “Relative combat power is dynamic and can be directly influenced by opposing commanders. It therefore must be analyzed by the commander in its potential relation to all other factors.â€� One of the fundamental ways a commander could shift the balance of combat power against an enemy was through maneuver: “Maneuver must be used to alter the relative combat power of military forces.â€�

[As I mentioned in a previous post, Trevor Dupuy considered FM 100-5 (1954)’s list and definitions of the principles of war to be the best version.]

Into the “Pentomic Era�

The 1962 edition of FM 100-5 supplied a general definition of combat power that articulated the way the Army had been thinking about it since 1939.

Combat power is a combination of the physical means available to a commander and the moral strength of his command. It is significant only in relation to the combat power of the opposing forces. In applying the principles of war, the development and application of combat power are essential to decisive results.

It further refined the elements of combat power by redefining the principles of economy of force and security in terms of it as well.

By the early 1960s, however, the Army’s thinking about force on the battlefield was dominated by the prospect of the use of nuclear weapons. As Boslego noted, both FM 100-5 (1962) and FM 100-5 (1968)

dwelt heavily on the importance of dispersing forces to prevent major losses from a single nuclear strike, being highly mobile to mass at decisive points and being flexible in adjusting forces to the current situation. The terms dispersion, flexibility, and mobility were repeated so frequently in speeches, articles, and congressional testimony, that…they became a mantra. As a result, there was a lack of rigor in the Army concerning what they meant in general and how they would be applied on the tactical battlefield in particular.

The only change the 1968 edition made was to expand the elements of combat power to include “firepower, mobility, communications, condition of equipment, and status of supply,” which presaged an increasing focus on the technological aspects of combat and warfare.

The first major modification in the way the Army thought about combat power since before World War II was reflected in FM 100-5 (1976). These changes in turn prompted a significant reevaluation of the concept by then-U.S. Army Major Huba Wass de Czege. I will tackle how this resulted in the way combat power was redefined in the 1982 edition of FM 100-5 in a future post.

Notes

[1] David V. Boslego, “The Relationship of Information to the Relative Combat Power Model in Force XXI Engagements,� School of Advanced Military Studies Monograph, U.S. Army Command and General Staff College, Fort Leavenworth, Kansas, 1995.

Iranian Civilian Casualties In The Iran-Iraq War (8)

Iranian Civilian Casualties In The Iran-Iraq War (8)

[Conflict Iran]

[This post is based on “Iranian Casualties in the Iran-Iraq War: A Reappraisal,� by H. W. Beuttel, originally published in the December 1997 edition of the International TNDM Newsletter.]


Posts in this series:
Iranian Casualties in the Iran-Iraq War: A Reappraisal
Iranian Missing In Action From The Iran-Iraq War
Iranian Prisoners of War From The Iran-Iraq War
The “Missing� Iranian Prisoners of War From The Iran-Iraq War
Iranian Killed In Action And Died Of Wounds In The Iran-Iraq War
Iranian Wounded In Action In The Iran-Iraq War
Iranian Chemical Casualties In The Iran-Iraq War
Iranian Civil Casualties In The Iran-Iraq War
A Summary Estimate Of Iranian Casualties In The Iran-Iraq War


The Iran-Iraq War produced remarkably few civilian casualties compared to World War I or World War II rates. UNICEF data suggests that prior to World War I, civilians accounted for only 5% of all deaths in a given war. This rose to 15% in World War I and an astounding 65% in World War II.[113] Iran claims 11,000 civilian deaths as a result of the war primarily through Iraqi air and missile strikes. The author‘s own study of Iranian civilian deaths places it at about 8,800 known deaths, indicating this number is probably very close to the true �gure. If so, civilian deaths accounted for just 5% of total war dead, a turn-of-the-century standard. The number of wounded has not been released, but this author’s �gures can account for over 34,000 civilian wounded by air and missile strikes. Further, Iran claims 45,000 civilian “chemical� casualties. If all claims are true then approximately 90,000 civilians became casualties of the war.

This yields a military to civilian casualty ratio of 11:1. This is far better than the ratio claimed in recent wars of 1:9. This suggests that despite the hysteria surrounding “War of the Cities,� the Iranian civilian population was not severely at risk during the war. Compare this to World War II England where the one-year German V-1/V-2 campaign killed 8,588 and wounded 46,838.[114] Then contrast it to total English civilian casualties during World War II at 60,000 dead and 86,800 wounded due to the blitz and buzz bombs. U.K. military killed, wounded and missing (excluding PoW) were 582,900 in World War II giving a military-to-civilian casualty ratio of 4:1.[115] Of course the World War II German bombing and missile campaigns against England were far more severe than that experienced by Iran at the hands of Iraq.

Civilian chemical casualties match military in magnitude. At �rst this might seem strange. I have found no World War I data on military-to-civilian casualty ratios as regards chemical agents, so there is no point of comparison or contrast here. The high number of civilian chemical casualties seems to be a function of several factors. First some 2,000 Iranian towns and villages lay in areas where Iraqi forces employed chemical weapons.[116] Secondly, Iraqi chemical strikes were often delivered deep into Iranian rear areas to attack reinforcements and support troops. Casualties were often high as the rear echelon troops were less well equipped and prepared to cope with chemical attacks.[117] In these rear area attacks the civilian population density must have been much higher than on the front line. Further, civilians probably had no means of chemical defense. Witness the chemical attack on Halabja in March 1988 with mustard, nerve and cyanogen chloride which killed some 4,000-5,000 civilians and maimed 7,000 others, This may explain the 1:1 relationship between overall Iranian military and civilian chemical casualties.

Mr. Beuttel, a former U.S. Army intelligence officer, was employed as a military analyst by Boeing Research & Development at the time of original publication. The views and opinions expressed in this article do not necessarily reflect those of The Boeing Company.

NOTES

[113] Abstracts Obtained from Iran on Medical Research Conducted After the 1980-1988 Iran-Iraq War,” www.chronicillnet.org/PGWS/tuite/IRMED/IRANTOC.html

[114] Charles E. Heller, Chemical Warfare in World War I: The American Experience 1917-1918, Leavenworth Papers No. 10, Ft. Leavenworth, KS: Combat Studies Institute, 1984, p. 67; Denis Winter, Death’s Men: Soldiers of the Great War,New York, Penguin, Viking, 1978, p. 124.

[115] “Bis(2-chloroethyl)thioether, C4H8SCI2,â€� www.ch.ic.ac.uk/vchemlib/mol/horrible/War/mustard

[116] Anthony Coordesman, The Lessons of Modern War Volume II: The Iran-Iraq War, Boulder, CO; Westview Press, 1990, p. 525, n. 56.

[117] Kenneth R. Timmerman, Death Lobby: How the West Armed Iraq, New York, Houghton Mifflin Company, 1991, pp. 145-146.

Chinese “Pirates� Accused Of Plundering WWII-Era Shipwrecks

Chinese “Pirates� Accused Of Plundering WWII-Era Shipwrecks

A crane barge allegedly pulling up scrap metal from a World War II wreck in the Java Sea. [The Daily Mail]

An investigation by the British newspaper The Daily Mail has alleged that 10 British shipwrecks from World War II lying of the coasts of Malaysia and Indonesia have been illegally salvaged for scrap by “pirates,� including Chinese, Mongolian, and Cambodian-flagged vessels. The shipwrecks have been designated war graves and are protected from looting by the U.N. International Salvaging Convention and British, Indonesian and Malaysian law.

British Defense Minister Gavin Williamson has demanded an immediate investigation into allegations that dozens of barges with cranes have been plundering the wrecks for many years.

One Chinese shipping giant, Fujian Jiada, which owns five of eight barges alleged to be recently actively salvaging, has denied any involvement. The Malaysian Navy impounded the Fujian Jiada-owned Hai Wei Gong 889 in 2014 on charges of illegally salvaging Japanese and Dutch shipwrecks, and detained another Vietnamese-crewed barge in 2015 for doing the same.

Both vessels were also accused of looting the wrecks of the battleship H.M.S. Prince of Wales and battlecruiser H.M.S. Repulse, sunk by Japanese aircraft off the coast of Malaysia in 1941. Marine experts estimate half of the remains of the two ships have disappeared and stolen artifacts have been discovered being offered for auction.

In 2016, the British and Dutch Defense Ministries revealed the discovery that the wrecks of three Dutch Navy, three British Navy, and one U.S. Navy ships sunk off the coast of Indonesia during World War II had disappeared from the seabed.

Sonar image of the Java Sea bed location where the wreck of the HMS Exeter used to be. [BBC]

Metals salvaged from the wrecks can be quite lucrative, each vessel yielding up to ₤1 million, and brass propellers and fixtures selling for ₤2,000 per metric ton. Metals fabricated before post-World War II atmospheric nuclear testing are particularly useful for medical devices. The Daily Mail found that the barges drop the cranes on to the wrecks to break off large pieces. These are then taken to scrapyards in Indonesia to be cut into smaller pieces, which are then shipped to China and sold into the global steel markets.

And earlier TDI post on the this subject can be found here:

The Curious Case of the Missing WWII Shipwrecks

Iranian Chemical Casualties In The Iran-Iraq War (7)

Iranian Chemical Casualties In The Iran-Iraq War (7)

[Conflict Iran]

[This post is based on “Iranian Casualties in the Iran-Iraq War: A Reappraisal,� by H. W. Beuttel, originally published in the December 1997 edition of the International TNDM Newsletter.]


Posts in this series:
Iranian Casualties in the Iran-Iraq War: A Reappraisal
Iranian Missing In Action From The Iran-Iraq War
Iranian Prisoners of War From The Iran-Iraq War
The “Missing� Iranian Prisoners of War From The Iran-Iraq War
Iranian Killed In Action And Died Of Wounds In The Iran-Iraq War
Iranian Wounded In Action In The Iran-Iraq War
Iranian Chemical Casualties In The Iran-Iraq War
Iranian Civil Casualties In The Iran-Iraq War
A Summary Estimate Of Iranian Casualties In The Iran-Iraq War


Historical Chemical Casualties

The War of Sacred Defense was the only conflict of the 20th Century other than World War I fought under conditions of general chemical release. The Iranian ground forces were generally ill-prepared for chemical defense, during the course of the war much NBC defense gear was purchased from the U.K., Germany, and Czechoslovakia, but there was never enough and NBC [nuclear, biological, chemical] defense training was insufficient. Many Iranian solders became gas casualties because they did not shave often enough to allow their protective masks to make a tight seal.[88]

Throughout the war Iraq employed chemical weapons against Iranian forces 195 times. After the chemical attack on Halabja in March 1988 killed some 4,000-5,000 civilians and maimed 7,000 others, the IRGC sent a video crew to document the atrocity. The video was used as a training �lm for Iranian recruits. Instead of instilling hatred for Saddam’s brutality, the �lm demoralized its viewers and exaggerated the power of Iraqi chemical weapons.[89] Iranian troops later panicked under gas attack conditions at Fao and Majnoon and abandoned their positions. However, this phenomenon was widespread in the First World War.[90] Further, chemical attacks were usually not significantly lethal. This is again in accord with World War I experience. Gas inflicted 70,552 casualties on the American Expeditionary Force in 1917-18. Of these only 1,221 died (2% lethality). The British Army suffered 185,706 gas casualties of which only 5,899 died (3% lethality), Total British battle casualties for World War I were 677,515 KIA and 1,837,613 WIA. Gas accounted for only 7% of all British casualties and only 1% of all KIA. The Russian Anny suffered an amazing 600,000 gas casualties with a lethality rate at times as much as 12%.[91]

The Use Of Gas In The Iran-Iraq War

Iraq may have first used gas in late 1980 near Salamcheh. Iran reported its �rst chemical casualty in �ghting near Hoveyzeh in early 1981. These early attacks seem to have been limited to the riot control agent CS. On 27 October 1982, near Musain, four Iranian soldiers died from toxic chemical exposure, probably mustard gas. In mid-August 1983 Iran suffered 318 casualties from mustard and arsenic agents. On 7, 9, and 13 November 1983, Iraq used mustard in the Panjwin area. Four seriously wounded Iranian soldiers later died in European hospitals.[92] Between May 1981 and March 1984, Iran claimed Iraq had employed chemical weapons on forty-nine different occasions. This had resulted in 1,200 Iranian dead and 5,000 wounded.[93] Mycotoxins may also have been used.[94] On 17 March 1984 Iraqi forces employed gas which caused 400 Iranian casualties, 40 of which were from nerve agents.[95] In the Badr operation (1-18 March 1985) Iraq used chemical weapons �ve times, but inflicted only 200 Iranian casualties, none apparently fatal.[96] In one unnamed 1985 attack, Iran claimed 11,000 troops were exposed to Iraqi chemical agents.[97] In Wal Fajir-9 (15 February-11 March 1986) Iran claimed 1,800 chemical casualties from a total of about 30,000.[98] Up to 8,500 Iranian soldier were gas casualties by the end of Wal Fajir-8 and Wal Fajir-9 (15 February-19 May 1986) with about 700 killed or seriously wounded.[99] In attacks on 27 and 30 January, 9, 10, 12, and 13 February 1986, 8,500 Iranian gas casualties were reportedly suffered, of which 35 died and 2,500 had to be hospitalized.[100] In Karbala-4 (24-26 December 1986) only �ve Iranian troops died from toxic gas out of 10,000 battle casualties.[101] By early 1987, chemical weapons had inflicted at least 10,000 Iranian casualties.[102] In all Iran had suffered 25,600 gas casualties by April 1988, of which 260 (sic 2,600?) died. Iraq’s extensive use of chemical agents in the �nal months before the August 1988 cease-�re may have raised the casualty count to as much as 45,000.[103] In the Iraqi “In God We Trust� offensive of June 1988 against Majnoon, Iran claimed sixty soldiers killed and 4,000 wounded by Iraqi chemical weapons, which included nerve and blood agents.[104] A small U.K. article on mustard gas from the Internet cites 5,000 Iranian troops killed by gas and 40,000-50,000 injured during the war.[105] The overall cumulative wartime pattern of Iranian military chemical casualties is illustrated in the below �gure.

The Lethality Of Gas

Speaking in 1996, Abdollah Mazandarani, Secretary General of the Iranian Foundation for Chemical Warfare Victims, claimed 25,000 Iranian soldiers were “martyred� (killed?) by Iraqi use of chemical weapons in operations Wal Fajir-8, Karbala-8, Badr, Fao, and Majnoon. 45,000 civilians were also affected by chemical weapons.[106] Iran claims at least 100,000 wounded by chemical weapons during the imposed war with Iraq. 1,500 of these casualties require constant medical attention to this day. Since 1991, 118 have died as a result of their toxic chemical exposure according to Hamid Sohralr-Pur, head of the Foundation of the Oppressed and Disabled’s Center for Victims of Chemical Warfare.[107] One of these was Reza Alishahi, who died in September 1994 after suffering 70% disability when he was gassed during the Wal Fajir offensives of 1987.[108] Another pathetic story is that of Magid Azam, now a 27-year-old medical student, who was a 16-year-old Baseej �ghter gassed with mustard in the Karbala-5 offensive of January 1987 with no apparent permanent effects. In 1995 his health suddenly began to deteriorate so rapidly he required intensive care. His lungs are now so damaged that only a transplant can save his life. He is one of 30,000 Iranian veterans who have received treatment for recurring or delayed reactions to chemical weapons. It is estimated that up to 100,000 Iranian soldiers were exposed to toxic agents during the war.[109]

In the First World War toxic chemical agents accounted for only 4-5% of total casualties. Of 1,296,853 known chemical casualties in that conflict, 90,080 died (7%), 143,613 were badly wounded (11%) and the remaining 1,053,160 (82%) not seriously affected.[110] 25,000 Iranian military dead out of 45,000 chemical casualties gives an incredible chemical lethality rate of 56%, higher than that for land mines. This claim of 25,000 Iranian troops “martyred� is not an exaggeration, but rather a probable misprint.[111] Elimination of an extraneous zero makes the number 2,500, in line with previously released �gures. This would give a chemical lethality rate of 6% per chemical casualty, remarkably close to the World War I general rate, although somewhat higher than individual U.S. or British experience. Further, 45,000-55,000 military chemical casualties out of 1,133,000 total combat casualties yields a 4% casualty total for chemical weapons, again in line with overall World War I experience. 2,500 dead from chemical weapons is only 1% of total Iranian KIA. If 5,000 cited above is correct, about 3%. A representative sample of 400 chemical warfare casualties treated at the Labbati-Nejad Medical Center in Tehran in early 1986 yielded 11 deaths (3%) and 64 (16%) very seriously injured.[112]

Mr Beuttel, a former U.S. Army intelligence officer, was employed as a military analyst by Boeing Research & Development at the time of original publication. The views and opinions expressed in this article do not necessarily reflect those of The Boeing Company.

NOTES

[88] Anthony Cordesman, The Lessons of Modern War Volume II: The Iran-Iraq War, Boulder CO: Westview Press, 1990, pp. 516.

[89] Kenneth R. Timmerman, Death Lobby: How the West Armed Iraq, New York: Houghton Mifflin Company, 1991, pp. 293-94.

[90] G. M. Hammerman et al., Impact of the Introduction of Lethal Gas on the Combat Performance of Defending Troops, Fairfax VA: Data Memory Systems Inc., 1985, Contract No. DNA 001-84-C-0241.

[91] Charles E. Heller, Chemical Warfare in World War I: The American Experience 1917-1918, Leavenworth Papers No. 10, Ft Leavenwoth, KS: Combat Studies Institute, 1984, pp. 33, 91-92. This represented some 32% of all hospitalized AEF casualties in World War I. Only about 200 were killed in action outright by gas. U.S. troops were ill prepared, poorly equipped and inadequately trained to �ght on the European chemical battle�eld. See Denis Winter, Death’s Men: Soldiers of the Great War, London: Penguin Books, 1978, p.125.

[92] Cordesman, The Lessons of Modem War Volume II, pp. 188, n. 23, 513-518.

[93] Edgar O’Ballance, The Gulf War, London: Brassey’s, 1988, p. 149; Peter Dunn, “The Chemical War: Journey to Iran,� NBC Defense and Technology International, April 1986, pp. 28-37.

[94] U.S. Chemical and Biological Warfare Related Dual Use Exports to Iraq and Their Possible Impact on Health Consequences of the Gulf War. (The “Riegle Report�) citing H Kadivar and S.C. Adams, “Treatment of Chemical and Biological Warfare Injuries: Insights Derived from the 1984 Attack on Majnoon Island,� Military Medicine, April 1991, pp. 171-177.

[95] Dunn, “The Chemical War: Journey to Iran,� pp. 28-37.

[96] O’Ballance, The Gulf War, p. 164.

[97] “Iranians Still Suffering from Saddam‘s Use of Mustard Gas in War,� Buffalo News, 23 November 1997.

[98] O’Ballance, The Gulf War, p. 179.

[99] Cordesman, The Lessons of Modem War Volume II, pp. 224; Peter Dunn, “The Chemical War: Iran Revisited – 1986,â€� NBC Defense and Technology International, June 1986, pp. 32-37.

[100] “Iran Keeps Chemical ‘Options’ Open; Claims to Have Upper I-land,� NBC Defense and Technology International, April 1986, pp. 12-13.

[101] O’Ballance, The Gulf War, p. 193.

[102] Cordesman, The Lessons of Modem War Volume II, p. 264, n. 39.

[103] ibid, pp. 516-517.

[104] ibid, p. 389.

[105] “Bis(2-chloroethyl)thioether, C4H8SCI2,â€� www.ch.ic.ac.uk/vchemlib/mol/horrible/War/mustard

[106] “Official Says Germany, U.S. and Britain were Main Suppliers of Chemicals to Iraq,� IRNA, 1 December 1996.

[107] “I18 Iranian Chemically Wounded War Veterans Martyred Since 1991,� IRNA, 17 April 1997.

[108] “Latest Victim of Iraqi Chemical Warfare Against Iran Dies,” IRNA, 27 September 1994.

[109] “Iranians Still Suffering from Saddam’s Use of Mustard Gas in War,� Buffalo News, 23 November 1997.

[110] Ian V. Hogg, Gas, New York: Ballantine Books, 1975, p.136.

[111] This report was taken from the intemet where sometimes an extraneous number appears in figures. Such was the case when another report stated that 9974 Iraqi PoWs had been released in 1996, when the true �gure was 974.

[112] Dunn, “The Chemical War: Iran Revisited – 1986,â€� pp. 32-39.

Drones: The People’s Weapon?

Drones: The People’s Weapon?

The DJI Matrice 600 commercial drone for professional aerial photography. Available for $4,600, a pair of these drones were allegedly used in an assassination attempt on Venezuelan President Nicolás Maduro in August 2018. [Wired]

Last week, the Russian Ministry of Defense claimed that its military air defense assets had shot down 45 drones in attempted attacks on Khmeimim Air Base, the main Russian military installation in Syria. The frequency of these attacks were increasing since the first one in January, according to Major General Igor Konashenkov. Five drones had been downed in the three days preceding the news conference.

Konashenkov asserted that although the drones appeared technologically primitive, they were actually quite sophisticated, with a range of up to 100 kilometers (60 miles). While the drones were purportedly to be piloted by Syrian rebels from Idlib Provence, the Russians have implied that they required outside assistance to assemble them.

The use of commercial off-the shelf (COTS) or modified off-the-shelf (MOTS) aerial drones by non-state actors for actions ranging from precision bombing attacks on combat troops, to terrorism, to surveillance of law enforcement, appears to be gaining in popularity.

Earlier this month, a pair of commercial drones armed with explosives were used in an alleged assassination attempt on Venezuelan President Nicolás Maduro. Daesh fighters in Syria and Iraq have been using drones for reconnaissance and to drop explosives and bombs on opposition forces.

According to Kathy Gilsinan in The Atlantic,

In 2015, Reuters reported that a protester flew “a drone carrying radioactive sand from the Fukushima nuclear disaster onto the prime minister’s office, though the amount of radiation was minimal.� Mexican cartels have used drones to smuggle drugs and, in one instance, to land disabled grenades on a local police chief’s property. Last summer, a drone delivered an active grenade to an ammunition dump in Ukraine, which Kyle Mizokami of Popular Mechanics reported caused a billion dollars’ worth of damage.

Patrick Turner reported for Defense One that a criminal gang employed drones to harass an FBI hostage rescue team observing an unfolding situation outside a large U.S. city in 2017.

The U.S. Defense Department has been aware for some time of the potential effectiveness of drones, particularly the specter of massed drone “swarm� attacks. In turn, the national security community and the defense industry have turned their attention to potential countermeasures.

As Joseph Trevithick reported in The Drive, the Russians have been successful thus far in thwarting drone attacks in Syria using air defense radars, Pantsir-S1 short-range air defense systems, and electronic warfare systems. These attacks have not involved more than a handful of drones at a time, however. The initial Syrian rebel drone attack on Khmeimim Air Base in January 2018 involved 10 drones carrying 10 bomblets each.

The ubiquity of commercial drones also raises the possibility of attacks on non-military targets unprotected by air defense networks. Is it possible to defend every potential target? Perhaps not, but Jospeh Hanacek points out in War on the Rocks that there are ways to counter or mitigate the risk of drone attacks that do not involve sophisticated and expensive defenses. Among his simple suggestions are using shotguns for point defense against small and fragile drones, improving communications among security forces, and complicating the targeting problem for would-be attackers. Perhaps the best defense against drones is merely to avoid overthinking the problem.

Iranian Wounded In Action In The Iran-Iraq War (6)

Iranian Wounded In Action In The Iran-Iraq War (6)

[Conflict Iran]

[This post is based on “Iranian Casualties in the Iran-Iraq War: A Reappraisal,� by H. W. Beuttel, originally published in the December 1997 edition of the International TNDM Newsletter.]


Posts in this series:
Iranian Casualties in the Iran-Iraq War: A Reappraisal
Iranian Missing In Action From The Iran-Iraq War
Iranian Prisoners of War From The Iran-Iraq War
The “Missing� Iranian Prisoners of War From The Iran-Iraq War
Iranian Killed In Action And Died Of Wounds In The Iran-Iraq War
Iranian Wounded In Action In The Iran-Iraq War
Iranian Chemical Casualties In The Iran-Iraq War
Iranian Civil Casualties In The Iran-Iraq War
A Summary Estimate Of Iranian Casualties In The Iran-Iraq War


No of�cial Iranian �gures of overall wounded have been released to this author’s knowledge. Major General Rezai in the interview cited above mentioned some 200,000 permanently disabled. For reasons given above, this probably represents all components, not just Pasdaran forces. Given the standard 4:1 wounded-to-killed ratio, Iranian wounded must have been about 752,000. This gives a total battle casualty sum of right at 940,000. A problem is we have no data on Died of Wounds (DoW) as a category. Also the war was one of general chemical release which biases �gures somewhat as the experience of World War I shows.

If the of�cial Iranian �gures are only rigorous KIA (death within one hour and counting 72,754 MIAs as KIAs) then using a “World War I w/gas� planning factor the ratio of wounded-to-killed would be 5.96 indicating about 1,120,480 “wounded.� This is probably high as the blanket Iranian casualty figures for deaths probably include both KIA and DoW.

If we consider the Iranian ï¬�gures to indicate both KIA and DOW the “World War I w/gas” ratio of surviving wounded to KIA and DOW of 4.1 yields 770,800 “surviving wounded.”

The average of these latter two �gures is on the order of 945,440 wounded. This produces a ratio of 5:1. It seems reasonable that this average is closest to the truth.

Another clue to total Iranian wounded comes from the statistics of the Khuzistan Blood Transfusion Center. During the war the center provided 736,284 units of blood and blood products for both combatants and civilian patients in the province. The center itself produced 501,639 of the units.[83] In World War II, 10-12% of wounded were transfused with an average usage of 4.3 units of blood per patient.[84] It is likely the center used the majority of its blood products for combatants. If the 501,639 units it produced itself was so used with the remainder procured for the civilian population, applying World War II standards the total number of wounded transfused would be: 501,639/4.3 = 116,660. This in tum might represent 12% of total wounded. Back calculating gives 116,660/12 * 100 = 972,168. This is very close to the above estimate of 945,000 surviving wounded. It, however, may be high as it would probably include a substantial number who received transfusion, but died of wounds.

One last observation—the Iranians tried to make extensive use of Medevac [medical evacuation] helicopters during the war similar to U.S. Army practice in Viet Nam. In the latter conflict the ratio of KIA and DoW to surviving wounded was 4.16, very close to the “World War I w/gas” planning factor of 4.1.[85] However, the Medevac solution was not completely feasible as it did not suit Iranian climatic and geographic situations. As a result the Iranians built a series of underground clinics immediately behind the front lines which offered the best and most expeditious medical service to their wounded according to Brigadier General Abolqasem Musavi, chancellor of the Iranian Army Medical University. This system allowed speedy evacuation and treatment of wounded even in mass casualty situations.[86]

Given that the Iranian Army suffered on the order of 1,133,000 casualties in the War of Sacred Defense what else does this tell us about the conflict?

First, the average annual “theater� battle casualties would be approximately 28% or 141,000 battle casualties per year (given that the Iranians had about 500,000 troops committed at any one time). This rate is only little over half that of World War I although about 50% higher than that of World War II. As far as U.S. wars are concerned it most resembles that of the U.S. Civil War (24.6%).

The distribution of casualties is also in accordance with modern experience since 1945. The dead (188,000) represent about 17%, severely wounded (200,000) about 18%, and other wounded (745,000) about 65%. This matches closely with T. N. Dupuy’s historically derived distribution of modern war casualties of 20% KIA, 15% severely wounded and 65% other wounded.[87]

Mr Beuttel, a former U.S. Army intelligence officer, was employed as a military analyst by Boeing Research & Development at the time of original publication. The views and opinions expressed in this article do not necessarily reflect those of The Boeing Company.

NOTES

[83] “Kuzistan’s Blood Transfusion Center’s Effectiveness Role in Hygiene and War,� abstract contained in “Abstracts Obtained from Iran on Medical Research Conducted After the 1980-1988 Iran-Iraq War,� www.chronicillnet.org/PGWS/tuite/IRMED/IRANTOC.html.[Dead link, August 2018]

[84] John Ellis, The Sharp End: The Fighting Man in World War II, New York: Charles Scribner’s Sons, 1980, p.169.

[85] Trevor N. Dupuy, Attrition: Forecasting Battle Casualties and Equipment Losses in Modern War, Fairfax, VA: HERO Books, 1990, pp. 48-50.

[86] “Army Medical Department Acquired Expertise,” Iran News, 16 October 1997.

[87] Dupuy, Attrition, pp. 165-167.

Iranian Killed In Action and Died of Wounds In The Iran-Iraq War (5)

Iranian Killed In Action and Died of Wounds In The Iran-Iraq War (5)

[Conflict Iran]

[This post is based on “Iranian Casualties in the Iran-Iraq War: A Reappraisal,” by H. W. Beuttel, originally published in the December 1997 edition of the International TNDM Newsletter.]


Posts in this series:
Iranian Casualties in the Iran-Iraq War: A Reappraisal
Iranian Missing In Action From The Iran-Iraq War
Iranian Prisoners of War From The Iran-Iraq War
The “Missing� Iranian Prisoners of War From The Iran-Iraq War
Iranian Killed And Died Of Wounds In The Iran-Iraq War
Iranian Wounded In Action In The Iran-Iraq War
Iranian Chemical Casualties In The Iran-Iraq War
Iranian Civil Casualties In The Iran-Iraq War
A Summary Estimate Of Iranian Casualties In The Iran-Iraq War


Killed and Died of Wounds

As early as 1984—only half way through the war—estimates of Iranian casualties were wildly exaggerated as equally as wildly divergent. Figure 2 illustrates this so-called “Thermometer of Death� widely believed in the West.

Of 72,753 currently estimated MIAs, virtually all are probably KIA. When this is added to the of�cial KIA count of 123,230 we arrive at a total of 195,983 fallen.

Another clue for total KIA total comes from the Behest-e Zahra Military Cemetery in Tehran. In this cemetery rest 36,000 fallen from Tehran Province alone.[77] The Iranian Army was (and is) a territorially based and mobilized entity. Depending on population base, the regions and provinces support various numbers and echelons of operational units. For example, the entire 1st Sarollah Corps is mobilized in Region 10 (Tehran) which has the largest population base. Kerman province, which is far less populous, is home to only the 41st Sarollah Division and the Zul�qar Brigade.[78] Given this fact we may postulate that total casualties of all provinces are proportional to their populations. If so, the 36,000 KIA from Tehran Province (about 20% of Iran’s total population) represents about 20% of total KIA. This leads us to the calculation Total KIA = 36,000 * 5 = 180,000. This proportion is also con�rmed by the mass ceremony for 3,000 recovered MIAs in February 1995. Six hundred of these were from Tehran Province, 20% of the total count in this instance.[79] Again, when 1,200 martyrs were buried nationwide in October 1997, 112 (or 17%) were from Tehran Province.

If we do a simple average of the two ï¬�gures we arrive at somewhere in the vicinity of 188,000 KIA. The minimum is too low as all MIAs are not yet accounted for. I use the average rather than the maximum as I feel that probably several thousand of the missing were defectors or collaborators who joined the ranks of the Iraqi sponsored National Liberation Army of Iran. Iran recruited at least 10,000 Iraqi PoWs into their “Badr” Army of Iraqi expatriates to ï¬�ght against Saddam Hussein.

The Moshen Rezui Excursion

In September of 1997, outgoing commander of the Pasdaran, Major General Moshen Rezai, cited some compelling statistics on Iranian casualties in the War of Sacred Defense. Speaking of the IRGC, he claimed some 2,000,000 Pasdaran served in combat over the course of the war. Of these 150,000 were martyred, 200,000 permanently disabled.[80] Taken at face value, these �gures suggest KIA totals far higher than released in 1988. The Pasdaran are cited as taking some 90% more KIA than disclosed at war’s end. If the proportion is the same for the regular army, then it must have suffered some 66,000 KIA, and paramilitary deaths were on the order of 16,000. The total KIA would stand at 232,000. Another question is whether Rezai counted the MIAs, and if so how many were Pasdaran (and Baseej)? If he did and the proportion is constant (69%) then some 23,000 of 33,000 cases recovered or settled were Pasdaran (or Baseej). This in turn boosts the count by at least 11,000 (counting regular army and paramilitary recovered M1As) to about 243,000. As there are at least 39,000 still missing (and presumed dead) the �nal tally would be on the order of 282,000 military and paramilitary dead.

On the other hand Major General Rezai may have been speaking somewhat loosely to exaggerate his component’s contribution. He has been known to exaggerate before. The number of 150,000 KIA matches the sum of the announced dead (123,220) at war’s end plus of�cially announced recovered MIA bodies—27,000 as of June 1997—(remember: 6,000 MIAs have been simply declared dead at family request). 123,220 + 27,000 = 150,220. The remaining estimated 39,000 residual MIAs would bring the total count of military combat dead to 189,000, in line with above estimates.

Possible Clues to Non-Battle Deaths

Another piece of indirect evidence comes from the vast quantities of Iranian equipment captured by Iraqi forces between March and July 1988. These losses included 1,298 tanks, 155 infantry �ghting vehicles, 512 armored personnel carriers, 365 pieces of artillery, 300 anti-aircraft guns, 6,196 mortars, 5,550 recoilless rifles, 8,050 RPG-7s, 60,164 assault rifles, 322 pistols, 501 engineer vehicles, 6,156 radios, 2,054 trucks and light vehicles, 16,863 items of NBC defense equipment and 24,257 caskets.[81] It is the caskets which are of interest.

These were obviously intended for Iranian dead. For an army that popular imagination saw as taking 10,000 dead in a single battle this was a paltry number, In early 1988 Iran had 600,000 troops on the battle front. 24,000 represent only 4% of this number. Interestingly, if this author’s calculation of Iranian KIA at circa 188,000 is correct, annual average war deaths would be roughly 188,000/8 or 23,500, almost the exact number of caskets. However, the Iranians did not know they were actually taking this many dead. They listed only 123,220 KIA at war’s end, not realizing how many “missing� (PoW/MIA) they really had and that over half of these were, in fact, dead. Expected annual war dead under their original figures would have been 123,000/8 = 15,000. This �gure is 40% less than the casket cache total, but probably represented an Iranian planning factor for annual graves registration requirements at the front, but with a 60% hedge?

Sixty percent seems somewhat excessive. 10-25% is a more normal “fudge� factor. It may, however, provide a clue to the rate of Iranian non-battle deaths which would require caskets too. In the latter case this would indicate a non-battle-to- (then known) battle deaths ratio of roughly .6. This would represent something like 74,000 non-battle deaths (accident, disease, etc). Ground truth ratio (with now known MIA dead) would be .39. This is almost identical to U.S. experience in World War II (.36) and does not approach the World War I experience (1.43).[82]

Mr Beuttel, a former U.S. Army intelligence officer, was employed as a military analyst by Boeing Research & Development at the time of original publication. The views and opinions expressed in this article do not necessarily reflect those of The Boeing Company.

NOTES

[77] “36,000 Martyr Commemoration Ceremony Wound Up,” Iran News, 10 May 1997.

[78] Kenneth Katzman, The Warriors of Islam: Iran’s Revolutionary Guard, Boulder, CO: Westview Press, 1994, pp. 86-89.

[79] “Leader, President Attend Funeral of 3,000 Martyrs in Tehran,� IRNA, 19 February 1995.

[80] “Rezai Speaks Out About His New Appointment, IRGC,� Iran News, 13 September 1997.

[81] Anthony H. Cordesman, After the Storm: The Changing Military Balance in the Middle East, Boulder, CO: Westview Press, 1993, p. 404.

[82] Trevor N. Dupuy, Attrition: Forecasting Battle Casualties and Equipment Losses in Modern War, Fairfax, VA: HERO Books, 1990, p. 51.

The “Missing� Iranian Prisoners Of War From The Iran-Iraq War (4)

The “Missing� Iranian Prisoners Of War From The Iran-Iraq War (4)

Helmets from dead Iranian soldiers. [Conflict Iran]

[This post is based on “Iranian Casualties in the Iran-Iraq War: A Reappraisal,” by H. W. Beuttel, originally published in the December 1997 edition of the International TNDM Newsletter.]


Posts in this series:
Iranian Casualties in the Iran-Iraq War: A Reappraisal
Iranian Missing In Action From The Iran-Iraq War
Iranian Prisoners of War From The Iran-Iraq War
The “Missing� Iranian Prisoners of War From The Iran-Iraq War
Iranian Killed And Died Of Wounds In The Iran-Iraq War
Iranian Wounded In Action In The Iran-Iraq War
Iranian Chemical Casualties In The Iran-Iraq War
Iranian Civil Casualties In The Iran-Iraq War
A Summary Estimate Of Iranian Casualties In The Iran-Iraq War


It is the opinion of this author that, aside from the 400 expatriates Iraq admitted, that the “5,000â€� Iranian PoW and “20,000 PoW/MIA” still unaccounted for [as of December 1997] will be shown to be KIA (dead on the battleï¬�eld or died in captivity) as recovery operations proceed (20 more were delivered to Iran in June 1997 and another 15 in August). The alternate possibility is that some or most of these personnel now serve in the NLA or other Iraqi supported resistance groups and their identities and existence are concealed for this reason. There is no real evidence that such a large number of living Iranian PoWs are still being held by Iraq. Another chilling possibility recently raised is that some Iranian POWs may have disappeared into the Iraqi biological weapons programs as human guinea pigs.â€�[73]

[Authors note: As this article went to press I uncovered a small piece of information from 1988. In reference to some of the Iranian MIAs being defectors to the Iraqi-sponsored NLA, the Iranians estimated that as many as 3,000 of their troops may have defected while PoWs in Iraq. They have never mentioned this since. Also 136 Iranian soldiers were arrested and shot for desertion.]

The continued Iranian insistence on 5,000 possible remaining PoWs may also be related to the 6,000 missing declared dead at family request without recovery of a body. In an interesting turn to usual practice, the families seem to have given up hope before the government has lost interest.

Further complicating the matter, Iran seems to have lost control of its accounting procedures. Originally listing 60,711 “missing� in 1988, this increased to 72,753 estimated MIA by 1995. If we combine the 39,048 released PoWs with 72,753 estimated MIA, Iran actually had some 111,801 PoW/MIA during the war or 84% more than they �rst thought. If there are 5,000 Iranian PoWs still held by Iraq then the total would be 116,801 or 92% higher than estimated.

The answer to this poor accounting probably lies in the overall organization for combat employed by Iranian forces during the war. In addition to the regular army and Pasdaran, Iran employed a third component called the Baseej. The Baseej al Mostafazim (Mobilization of the Oppressed) was founded as a wartime expedient to augment the IRGC and formally placed under their control in January 1981. Baseej formations comprised 300-man battalions divided into 100-man companies with 22-man platoons armed with light weapons.[74] Their functions were IRGC reinforcement in the war. Baseej units fought extensively in the War of Sacred Defense (1980-88). However, their availability was only episodic as their tour of duty was normally only three months, usually from January to March. At this time most Baseej were rural peasants, often very young (some only 10) or very old and illiterate, who had to return for spring planting and fall harvests. As a result their training was rudimentary, often as little as two weeks of small arms and hand grenade practice. It was the Baseej who were given plastic keys to hang around their necks with the promise these would unlock the gates of paradise if they were killed in action.[75] As many as two million Baseej forces saw combat in the imposed war with Iraq.[76]

When the Iranian government offered its original tally of dead and missing in 1988 the Baseej losses were not mentioned separately and assumed to fall under the category of Pasdaran. It was only after the war when most (if not all) Iranian PoWs had been released and the magnitude of the MIA issue became evident that Iran realized it had suffered far more losses than originally thought. It is likely the degree of Baseej unit administration and accountability was far below regular army or established Pasdaran formations. Given the episodic nature of their participation, widespread personnel illiteracy and their poor level of training (and the fact they were used as temporary human “�ll� for Pasdaran formations), it is unlikely that unit returns were maintained in anything like a proper or organized manner.

This author believes that the bulk of the additional true MIAs claimed since the end of the war are represented by primarily Baseej fallen who were simply not originally accounted for in established Pasdaran or regular army unit returns. Baseej units made up to 40% of Iranian force strength during the war. The 73,000 now-claimed missing (and presumed dead) of the war represent 38% of the total known and presumed combat dead (circa 188,000—see below). This is too close to be accidental.

Mr Beuttel, a former U.S. Army intelligence officer, was employed as a military analyst by Boeing Research & Development at the time of original publication. The views and opinions expressed in this article do not necessarily reflect those of The Boeing Company.

NOTES

[73] “The World’s Deadliest Woman?â€� MSNBC News, November 1997.

[74] Anthony H. Cordesman, The Iran-Iraq War and Western Security 1984-87, London: Jane’s Publishing Ltd, 1987, p. 103.

[75] Kenneth Katzman, The Warriors of Islam: Iran’s Revolutionary Guard, Boulder, CO: Westview Press, 1994, p. 67, 93.

[76] “Plans for 20 Million Strong Army by 2025,” Iran News, 25 September 1997.

Iranian Prisoners Of War From The Iran-Iraq War (3)

Iranian Prisoners Of War From The Iran-Iraq War (3)

Iranian Prisoners of War. [Conflict Iran]

[This post is based on “Iranian Casualties in the Iran-Iraq War: A Reappraisal,” by H. W. Beuttel, originally published in the December 1997 edition of the International TNDM Newsletter.]


Posts in this series:
Iranian Casualties in the Iran-Iraq War: A Reappraisal
Iranian Missing In Action From The Iran-Iraq War
Iranian Prisoners of War From The Iran-Iraq War
The “Missing� Iranian Prisoners of War From The Iran-Iraq War
Iranian Killed And Died Of Wounds In The Iran-Iraq War
Iranian Wounded In Action In The Iran-Iraq War
Iranian Chemical Casualties In The Iran-Iraq War
Iranian Civil Casualties In The Iran-Iraq War
A Summary Estimate Of Iranian Casualties In The Iran-Iraq War


Actual Numbers of PoWs and Missing in Action

By January 1982 Iran held some 28,423 Iraqi PoWs to Iraq’s 5,285 Iranian captives.[29] In early 1984 Iran held 50,000 Iraqis to Iraq’s 7,300 Iranian PoWs.[30] In August 1986 Iran claimed to hold some 52,000 Iraqi PoWs.[31] Just before the cease-�re in 1988 the International Commission of the Red Cross (ICRC) estimated 49,285 Iraqi PoWs in �fteen Iranian camps and 12,747 Iranians in ten Iraqi camps.[32]

On 9 August 1988 the ICRC count was 50,182 Iraqi PoWs held in Iran to 13,526 Iranians in Iraqi captivity.[33] Iran had at least 8,500 captured in the �nal Iraqi offensives oi July 1988 and another 700 on 23 August 1988 immediately after the cease-�re went into effect.[34] PoW release had begun long before the war ended. In August 1986 Iran had released 200 Iraqi PoWs and had unilaterally released some 620-650 previously.[35] By 18 October 1988 Iran and Iraq had agreed to begin PoW exchanges. Beginning 30 October 1988 each side exchanged 25 PoWs. Eight of the 25 Iranians were civilian internees captured early in the war.[36]

On 10 November Iran and Iraq agreed again to the exchange of 1,118 Iraqi and 411 Iranian PoWs who were badly wounded or ill.[37] However, after 156 Iraqis and only 57 Iranians had been released the exchange broke down by 27 November over 63 Iraqis who refused repatriation.[38] In January 1989 Iran released 131 sick and wounded Iraqis and Iraq reciprocated by releasing 124 Iranians.[39] In February Iran offered to release another 260 ill Iraqi PoWs. One hundred �fty-eight were released, but 27 refused to return.[40] In March 1989 the more or less of�cial count of PoWs was 50,000 Iraqi to 18,902 Iranians.[41] Iran, on 10 April, released 70 disabled and sick Iraqi PoWs and on 23 May a further 49 plus 15 other PoWs of varied nationalities who fought for Iraq.[42] No further activity occurred until December when Iran proposed more sick and disabled PoWs be exchanged and suggested that a substantial number of Egyptian nationals were among the PoWs it held.[43] Eventually on 14 March 1990 Iran released twenty Egyptians captured �ghting for Iraq.[44]

Post-Desert Storm PoW Exchanges

It was not until after Iraq’s invasion of Kuwait that the PoW issue came alive again. On 15 August 1990 Saddam Hussein offered to release all Iranian PoWs. He further allowed 17,000 Iranian nationals in Kuwait to return home. By 23 August PoW exchanges were running at 6,000 a day and some 21,000 Iraqi and Iranian PoWs had been repatriated.[45] By 4 September 23,798 Iranian and 24,250 Iraqis had been released.[46] On 16 November the two countries agreed to another exchange of 100 PoWs a day and a group of200 Iraqis was released on 4 December, another group of 200 on 10 December 1990.[47] There is no record of Iranian PoW releases by Iraq in this time period. However, a total of 39,043 Iranian PoWs were eventually released.[48]

On 1 June 1991 Iran claimed Iraq was still holding at least 5,000 Iranian PoWs, an assertion Iraq denied. When Iran repeated the claim in October, Iraq admitted it had 400 who refused repatriation.[49] During the 1991-92 time frame another 64 Iranian soldiers became PoWs during �ghting with the NLA [National Liberation Army of Iran] and Kurdish groups supported by Iraq.[50]

Then in early 1991 some 5,000 Iraqi soldiers crossed into Iran to evade coalition forces in the Desert Storm War. Beginning in November 1992 Iran released 400, followed by releases of 1,000 (April 1993), 400 (May 1993), 450 (June 1993) and 459 (July 1993). Eventually 4,115 were released in fourteen intervals with the last known release bringing the total to 4,574.[51] At the same time Iran released 100 Iraqi PoWs from the War of Sacred Defense in May 1993.[52]

At that time the ICRC claimed to have had overseen the repatriation of over 80,000 PoWs held by both Iran and Iraq.[53] This �gure is not borne out by the published numbers. At this time the maximum number of Iranian and Iraqi PoWs released from both the Iran-Iraq and Desert Storm wars stood at about 92,267, a discrepancy of 12,000. Some of the 17,000 repatriated civilian internees of the Iraqi invasion of Kuwait may have been counted. The ICRC still had some 19,000 Iraqis and 4,000 Iranians on its books as active PoWs.[54]

By July 1992 the only exchanges were those of 101 MIA bodies.[55] In December 1993 Iran complained Iraq was still holding 8,000 Iranian PoWs. The proof was that 26 Iranian civilian internees from the war had escaped and made it back to Iran that same month.[56]

In January 1994 Iran conceded that many of the personnel it listed as PoWs may have been KIA/MIA.[57] Then in July 1994 Iran accused Iraq of holding 16,000 Iranian PoWs.[58] According to the Red Cross Iran continued to hold as many as 19,000 Iraqi PoWs as of 1994.[59] In 1994 the ICRC calculated 4,168 con�rmed Iranian PoWs still in Iraq and some 475 other unaccounted for Iranian PoWs.[60]

In August 1995 the Iraqis complained Iran still held 7,000 of their PoWs.[61] That same month Iran released 100 PoWs. The ICRC claimed at that time it had overseen the repatriation of 82,000 of 100,000 known PoWs of the war.[62] MIA exchanges continued with Iraq returning 144 dead and Iran 200 in June 1996.[63] Since then Iran released 150 of Iraqi PoWs as late as 28 October and 724 on 27 December 1996 making a total of 974 that year.[64] Iraq insisted there were still 20,000 Iraqis captive in Iran.[65]

“Not even a single Iranian PoW has been released by the Iraqi regime in the past �ve years.�

In January 1997 the two nations exchanged 60 Iranian and 70 Iraqi MIA remains, but Iraq again insisted Iran held 17,000 of its PoWs.[66] In August 1997 Saddam Hussein claimed Iran still held 20,000 (1997 ICRC �gures about 13,000) Iraqi PoWs. He also claimed that all 39,000 Iranian PoWs held by Iraq had been freed except for a pilot downed during the early part of the war who was still being held as proof Iran started the whole thing.[67] The Iranians countered that 5,000 Iraqi PoWs had requested and been granted asylum in Iran which more or less agrees with 1994 ICRC �gures for total remaining Iraqi PoWs (19,000-5,000 = 14,000).[68] In September 1997 47 more Iraqi PoWs were released.[69] In total Iran has released some 48,650 Iraqi PoWs.[70] In November 1997 Iran approved release of another 500 Iraqi PoWs.[71]

Speaking in September 1997 Brigadier General Abdullah Naja�, chairman of the Iranian PoW commission, stated that “not even a single Iranian PoW has been released by the Iraqi regime in the past �ve years.�[72] This suggests that some may have been released as late as 1992, but this author can �nd no record of this. The cold fact remains that since 1990 (or 1992 at the latest), no known living Iranian PoW has been recovered. 27,000 remains of MIAs have with another 39,000 estimated. A chronology of this confusing and somewhat contradictory chain of events is given below.

This author’s �gures (admittedly incomplete) indicate the release of 92,267 PoWs (plus 547 more Iraqis as of November 1997) by both sides resulting from the Iran-Iraq and Desert Storm conflicts. If ICRC �gures for “PoWs� (which seems to include PoWs and CIs from both conflicts) are correct 18,000 are still unreleased. Their own �gures list 13,000 Iraqis and 5,000 Iranians still unreleased which makes up the difference.

Mr Beuttel, a former U.S. Army intelligence officer, was employed as a military analyst by Boeing Research & Development at the time of original publication. The views and opinions expressed in this article do not necessarily reflect those of The Boeing Company.

NOTES

[29] Edgar O’Ballance, The Gulf War, London: Brassey’s, 1988, p. 104,

[30] Dilip Hiro, The Longest War: The Iran-Iraq Military Conflict, London: Paladin Books, 1990, p. 106.

[31] Anthony Cordesman, The Lessons of Modern War Volume II: The Iran-Iraq War. Boulder CO: Westview Press, 1990, p. 266, n. 58.

[32] Cordesman, The Lessons of Modem War Volume II, p. 398.

[33] “Persian Gulf War, FYEO: For Your Eyes Only, No. 195, 15 August 1988, p. 195-4.

[34] “Persian Gulf War, FYEO, NO. 195, 15 August 1988, p. 195-4; “Persian Gulf War, FYEO, NO. 195, 12 September 1988, p. 197-3.

[35] Cordesman, The Lessons of Modem War Volume II, p. 266, n. 58.

[36] “Persian Gulf War, FYEO, NO. 201, 7 November 1988, p, 201-4.

[37] “Persian Gulf War, FYEO, NO. 202, 21 November 1988, p, 202-6,

[38] “Persian Gulf War, FYEO, NO. 203, 5 December 1988, p. 203-3.

[39] “Persian Gulf War, FYEO, NO. 206, 6 February 1989, p. 206-3,

[40] “Persian Gulf War, FYEO, NO. 207, 20 February 1989, p. 207-5; “Persian Gulf War, FYEO, NO. 208, 6 March 1989, p, 208-3,

[41] “Persian Gulf War�, FYEO, NO. 209, 20 March 1989, p, 209-3,

[42] “Persian Gulf War Aftermath,â€� FYEO, NO. 211, 17 April 1989, p. 211-3; “Persian Gulf War, FYEO, NO. 214, 29 May 1989, p. 214-5; “Persian Gulf War Aftermath,” FYEO, NO. 215, 12 June 1989, p. 215-9.

[43] “Persian Gulf“, FYEO, NO. 229, 25 December 1989, p. 229-4. The reports indicated 13,000-20,000 Egyptians held, but this �gure seems incredible.

[44] “Persian Gulf,� FYEO, N0. 236, 2 April 1990, p. 236-4,

[45] “Persian Gulf Crisis,� FYEO, No. 246, 20 August 1990, p. 246-3; “Persian Gulf Crisis,� FYEO, N0. 247, 3 September 1990, p. 247-1.

[46] “Persian Gulf Crisis,� FYEO, No. 248, 17 September 1990, p. 248-1.

[47] “Persian Gulf Crisis,” FYEO, No. 253, 26 November 1990, p. 253-2; “Persian Gulf Crisis,â€� FYEO, N0. 254, 10 December 1990, p. 254-1, 254-2; “Persian Gulf Crisis,â€� FYEO, No. 255, 24 December 1990, p. 255-1.

[48] “Iran Calls on Iraq to Release Prisoners of War,” Iran News, 18 August 1997.

[49] “War in the Gulf: Chronology of Events,” FYEO, No, 267, 10 June 1991, p. 267-2; “War in the Gulf: Chronology of Events,â€� FYEO, No. 277, 28 October 1991, p. 277-4.

[50] “Iran and Iraq,” International Commission of the Red Cross (ICRC) Annual Report 1996, 1 June 1997.

[51] “1,000 Iraqi Military Men to Return to Iraq,â€� 1, 17 February 1993; “Iran Releases More Iraqi PoWs,” IRNA, 22 April 1993; “Iran Frees Another Group of Iraqi Army Personnel,â€� IRNA, 19 May 1993; “450 Iraqi Military Men to Return Home Tomorrow,” IRNA, 22 June 1993; “Iran to Set Free 459 Iraqis Tomorrow,â€� IRNA, 13 July 1993.

[52] “Iran to Release More Iraqi PoWs,� IRNA, 26 May 1993.

[53] “Iran-Iraq Conflict: Repatriation Process May Resume,� ICRC Press Release, 96/40, 28 December 1996,

[54] “Aftermath of the Iran/Iraq War,� ICRC Annual Report 1994, 30 May 1995

[55] “Gulf War Aftermath: Chronology of Events,� FYEO, No. 297, 3 August 1992, p. 297-3.

[56] “Persian Gulf,� FYEO, No, 333, 20 December 1993, p. 333-3: “Persian Gulf,� FYEO, No. 324, 10 January 1994, p. 324-3.

[57] “Persian Gulf,� FYEO, No. 335, 24 January 1994, p. 335-3.

[58] “Persian Gulf,” FYEO, No. 348, 25 July 1994, p. 348-21

[59] “Aftermath of the Iran/Iraq War,� ICRC Annual Report 1994, 30 May 1995

[60] “Aftermath of the Iran/Iraq War,� ICRC Annual Report 1994, 30 May 1995

[61] “Persian Gulf,� FYEO, No. 376, 21 August 1995, p. 376-41

[62] “Iran: 100 Iraqi Prisoners of War Set Free,� ICRC News 34, 23 August 1995.

[63] “Persian Gulf,� FYEO, No. 399, 8 July 1996, p. 399-4.

[64] “Iran Releases 150 Iraqi PoWs,â€� Compass Middle East News Wire, 28 October 1996; “General Najaï¬�: Iran Continues to Release Remaining PoWs,” Tehran Times, 13 March 1997; “724 Iraqi Prisoners of War Freed Unilaterally,â€� Iran Review, No 2 (January 1997).

[65] “Persian Gulf,” FYEO, No. 412, 6 January 1997, p. 412-4.

[66] “Persian Gulf,� FYEO, No. 413, 20 January 1997, p. 413-3.

[67] “Iraq – Saddam Hits at Iran Over Jets, PoWs,â€� USNI Daily Defense News Capsules, 8 August 1997.

[68] “Issue of Iranian PoWs Should Be Publicized More,� IRNA, 18 August 1997.

[69] “Iran Releases More Iraqi PoWs Unilaterally,� IRNA, 25 September 1997.

[70] “Iran Calls on Iraq to Release Prisoners of War,� Iran News, 18 August 1997.

[71] “Iran to Unilaterally Release 500 Iraqi PoWs,” IRNA, 26 November 1997; “Leader Approves Release of Iraqi PoWs,â€� IRNA, 26 November 1997.

[72] “Iran Releases More Iraqi PoWs Unilaterally,� IRNA, 25 September 1997.

Iranian Missing In Action From The Iran-Iraq War (2)

Iranian Missing In Action From The Iran-Iraq War (2)

Shalmjah border, February 2010. An operation to repatriate the mortal remains of Iranian soldiers killed during the Iran-Iraq War is carried out under the aegis of the ICRC. [CC BY-NC-ND / ICRC / M. Greub]

[This post is based on “Iranian Casualties in the Iran-Iraq War: A Reappraisal,” by H. W. Beuttel, originally published in the December 1997 edition of the International TNDM Newsletter.]


Posts in this series:
Iranian Casualties in the Iran-Iraq War: A Reappraisal
Iranian Missing In Action From The Iran-Iraq War
Iranian Prisoners of War From The Iran-Iraq War
The “Missing� Iranian Prisoners of War From The Iran-Iraq War
Iranian Killed And Died Of Wounds In The Iran-Iraq War
Iranian Wounded In Action In The Iran-Iraq War
Iranian Chemical Casualties In The Iran-Iraq War
Iranian Civil Casualties In The Iran-Iraq War
A Summary Estimate Of Iranian Casualties In The Iran-Iraq War


Iranian Missing in Action: Wanted Dead or Alive

By 1995 Iran had conducted seventeen dedicated MIA [missing in action] retrieval operations from wartime battle�elds. Approximately 80% of the MIAs are believed to lie in Iraqi territory. In that year Iran proposed a joint Iranian-Iraqi accord to retrieve the missing of both sides.[18] Brigadier General Mir Feisel Baqerzadeh and IRGC Brigadier General Behahim Safaie head the Special Commission for MIA Retrieval. Iran claimed to have recovered or settled some 21,000 cases by early 1995. In that time 2,505 MIAs had been retrieved by joint search operations in Iraq and another 12,638 in Iranian territory, the latter representing 85% of those estimated missing in Iranian held ground. Back calculating these �gures indicates total Iranian missing was now regarded as 72,753, up 20% from the original �gure of 60,711. By October 1996 the count was 24,000 retrieved.[19] By June of 1997 the number of MIA cases resolved had risen to 33,000 including 6,000 death certificates issued at family request for individuals of whom no trace had ever been found.[20] As of September 1997 the total number of MIA bodies recovered stood at over 37,000 according to Brigadier General Baqerzadeh.[21] “Martyr� (i.e. killed in action) status entitles the family to a $24,000 lump sum death benefit as well as a $280 monthly pension with provision for $56 a month for each dependent child from the Foundation for the Martyrs,[22]

The rate of actual forensic identification of the remains is unknown. One source mentions a positive identification of some 900. The standard practice seems to be determination of the operation in which they were martyred and the provincial origins of units in that engagement. Wartime operations which have yielded large numbers of MIA remains are Beit al-Moqqadas-4, Kheiber, Karbala-4, Karbala-5, Karbala-6, Karbala-8, Karbala-10, Ramazan, Badr, Kheiber, Muslim Ibn-e Aqil, Wal Fajir Preliminary Operation, Wal Fajir-1, Wal Fajir-2, Wal Fajir-6, Wal Fajir-8, Fath-5, and the Iraqi attacks on Majnoon and Shalamech, The retrieval operations are often dangerous and occur in former mine�elds. As of 1995 eleven IRGC personnel had been killed and fourteen seriously wounded in MIA retrieval operations. Individual military units often recover their own MIAs. In a speech at Gurgan, Ali Mirtaheri, head of the committee in charge of search teams for MIAs of the 27th Huzrat-e Rasul Pasdaran Infantry Division, stated in November 1997 that divisional teams had recovered 1,610 MIA bodies. Forty-two team members from the division have been killed and another eighty maimed in the operations (probably from leftover mines).[23]

Due to the number of cases and the vigorous retrieval operations MIA funerals tend to be mass affairs. Burials in Tehran alone tell the story. In October 1993 208 were buried in Tehran and 360 in other locations. In October 1994 1,000 martyrs were buried in Tehran; in April 1995 another 600 of 3,000 just recovered MIAs and the following month 405 more in Mashad; in October 1995 600 were interred; 750 in October 1996; 1,000 more in January 1997; in July 1997 another 2,000 including 400 from Tehran Province were interred nationwide; in September 1997 200 of 1,233 interred nationwide, including 47 in Qazvin, 34 in Khuzistan, 5 in Shustar and 5 in Sistan-Baluchistan. Of these only 118 were unknowns.[24] Unrecovered Iranian MIAs are carried as active soldiers on their unit personnel rolls with their current status listed simply as “still at the front.� Iran has also recovered Iraqi MIAs, returning up to 400 bodies at a time in a mutual exchange program usually accomplished at the Khosrawi border station in Kermanshah Province.[25] A total of 31,000 Iraqi bodies have been so returned compared to 2,500 Iranian dead returned by Iraq as of January 1997.[26] In January 1997, in conjunction with the Iraqi return of the remains of sixty Iranian MIAs of the Wal Fajir Preliminary Operation, Brigadier General Mir Feisel Baqerzadeh stated that Iran was willing to assume all search responsibilities and associated costs for both Iraqi and Iranian MIAs on Iraqi territory should Iraq not wish to continue recovery operations.[27] In May 1997 Brigadier General Mohammed Balar, spokesman for the Commission for Iranian PoWs, called on international organizations to pressure Iraq to clarify the status of 20,000 Iranian MIAs.[28]

Mr Beuttel, a former U.S. Army intelligence officer, was employed as a military analyst by Boeing Research & Development at the time of original publication. The views and opinions expressed in this article do not necessarily reflect those of The Boeing Company.

NOTES

[18] “Iran Proposes Joint Committee to Decide Fate of PoWs,� Islamic Republic News Agency (IRNA), 18 October 1993.

[19] “The Remains of 750 Iranian Soldiers…” Al Akhbar Muslim World News, 15 October 1996.

[20] “Remains of Twenty Martyrs of Imposed War Handed Over to Iran,” IRNA, 1 June 1997.

[21] “Funeral Service to be Held Nationwide for 1,233 War Martyrs,� IRNA, 1 October 1997.

[22] Dilip Hiro, The Longest War: The Iran-Iraq Military Conflict, London: Paladin Books, 1990, p. 54.

[23] “37,000 Bodies of Martyrs Discovered in Seven Years,� IRNA, 10 November 1997.

[24] “Funeral Procession War Martyrs,â€� IRNA, 7 July 1997; “The Remains of 750 Iranian Soldiers…â€�, Al Akhbar Muslim World News, 15 October 1996; “Funeral Service to be Held Nationwide for 1,233 War Martyrs,” IRNA, 1 October 1997; “Funeral Service for War Martyrs,” Iran Daily, 7 October 1997.

[25] “3,000 Bodies of Martyrs Found on Former Iran-Iraq Battleï¬�elds,â€� IRNA, 15 February 1995; “Funeral Service Held for 405 Martyrs in Mashad,” IRNA, 6 March 1995; “Cases of Over 21,000 MIA’s Settled So Far, IRNA, 19 February 1995; “568 More Bodies of Iran’s MIAs Uncovered,â€� IRNA, 17 October 1993; “Paper on PoW Issues,” IRNA, 31 May 1993; “IRGC Ofï¬�cial: Investigations Continue to Find Our Martyrs’ Bodies,” IRNA, 20 February 1995; “Bodies of 65 Martyrs of Iraq-Imposed War Delivered to Iran,” IRNA, 13 August 1993; “Leader Attends Funeral for 600 Martys,â€� Iran News, 28 October 1995; “Leader Attends Funeral Service for 1,000 Martyrs,â€� Iran News, 20 October 1997; “War: MIAs Search Operation for MIAs Extended Another Year,â€� IRNA, 23 October 1995.

[26] “Funeral Ceremony for 1,000 Soldiers Killed in War Against Iraq,� Iran Weekly Press Digest, 21-31 January 1997.

[27] “Bodies of Sixty Martyrs Handed Over to Iran,� IRNA, 7 January 1997.

[28] “Iran Calls in International Clout to Find 20,000 PoWs,� Iran News, 20 May 1997.

Iranian Casualties in the Iran-Iraq War: A Reappraisal (1)

Iranian Casualties in the Iran-Iraq War: A Reappraisal (1)

The Martyrs Memorial to the Iran-Iraq War (1980-1988) in Imam Khomeini Square, Hamadan, Iran. [KiwiOutThere]

[This post is based on “Iranian Casualties in the Iran-Iraq War: A Reappraisal,” by H. W. Beuttel, originally published in the December 1997 edition of the International TNDM Newsletter.]


Posts in this series:
Iranian Casualties in the Iran-Iraq War: A Reappraisal
Iranian Missing In Action From The Iran-Iraq War
Iranian Prisoners of War From The Iran-Iraq War
The “Missing� Iranian Prisoners of War From The Iran-Iraq War
Iranian Killed And Died Of Wounds In The Iran-Iraq War
Iranian Wounded In The Iran-Iraq War
Iranian Chemical Casualties In The Iran-Iraq War
Iranian Civil Casualties In The Iran-Iraq War
A Summary Estimate Of Iranian Casualties In The Iran-Iraq War


The Iran-Iraq War was the longest sustained conventional war of the 20th Century. Lasting from 22 September 1980 to 20 August 1988, the seven years, ten months, and twenty-nine days of this conflict are some of the least understood in modem military history. The War of Sacred Defense to the Iranians and War of Second Qadissiya to Iraqis is the true “forgotten warâ€� of our times. Seemingly never ending combat on a scale not witnessed since World War I and World War II was the norm. Casualties were popularly held to be enormous and, coupled with the lack of battleï¬�eld resolution year after year, led to frequent comparisons with the Western Front of World War I. Despite the fact that Iran had been the victim of naked Iraqi aggression, it was the Iraqis who were viewed as the “good guys” and actively supported by most nations in the world as well as the world press.

Studying the Iran-Iraq War is beset with difficulties. Much of the reporting done on the war was conducted in a slipshod manner. Both Iraq and Iran tended to exaggerate each other’s losses. As oftentimes Iraqi claims were the only source, accounts of Iranian losses became exaggerated. The data is highly fragmentary, often contradictory, usually vague in particulars, and often suspect as a whole. It defies complete reconciliation or adjudication in a quantitative sense as will be evident below.

There are few stand-alone good sources for the Iran-Iraq War in English. One of the �rst, and best, is Edgar O’Ballance, The Gulf War (1988). O’Ballance was a dedicated and knowledgeable military reporter who had covered many conflicts throughout the world. Unfortunately his book ends with the Karbala-9 offensive of April 1987. Another good reference is Dilip Hiro, The Longest War: The Iran-Iraq Military Conflict (1990). Hiro too is a careful journalist who specializes in South Asian affairs. Finally, there is Anthony Cordesman and Abraham Wagner, The Lessons of Modern War Volume III: The Iran-Iraq War (1990). This is the most comprehensive treatment of the conflict from a military standpoint and tends to be the “standard� reference. Finally there are Iranian sources, most notably articles appearing since the war in the Tehran Times, Iran News, the Islamic Republic News Agency (IRNA) and others.

This paper will approach the subject of losses in the conflict from the Iranian perspective. This is for two reasons. First, too often during the war Iraqi claims and �gures were uncritically accepted out of prejudice against Iran. Secondly, since the War the Iranians have been more forthcoming about details of the conflict and though not providing direct �gures, have released related quantified data that allows us to extrapolate better estimates. The �rst installment of this paper examines the evidence for total Iranian war casualties being far lower than popularly believed. It will also analyze this data to establish overall killed-to-wounded ratios, MIA and PoW issues, and the effectiveness of chemical warfare in the conflict. Later installments will analyze selected Iranian operations during the war to establish data such as average loss rate per day, mean length of engagements, advance rates, dispersion factors, casualty thresholds affecting breakpoint and other issues.

Casualties as Reported and Estimated

Too often incorrect formulae were applied to calculate casualties or the killed-to-wounded ratio. The standard belief was that Iran suffered two wounded for every killed—a ratio not seen since the ancient world. Colonel Trevor N. Dupuy established that the average distribution of killed-to-wounded in 20th Century warfare is on the order of 1:4 and in fact this relationship may be as old as the year 1700.[1] In Operation Peace for Galilee of 1982 the Israeli ratio of killed-to-wounded was on the order of 1:6.5 while the Syrian was 1:3.56.[2] At the same time in the Falklands, U.K. casualty ratio was 1:3. For Argentine ground forces it was 1:4.85.[3] Also it was assumed that Iran must have suffered 3-4 times the casualties of Iraqi forces in many given engagements on the basis of no good evidence this author can �nd.

Typical Western estimates of Iranian losses in the war are given below.[4]

The lowest estimate of Iranian KIA was from the Pentagon which estimated the killed (military and civilian) at 262,000.[5]

At the end of 1980 the Iraqis claimed 4,500 Iranian KIA and 11,500 WIA.[6] Iraqi claims as of 22 September 1981 were 41,779 Iranian KIA[7] By the end of August 1981 other estimates placed it as 14,000-18,000 KIA and some 26,000-30,000 WIA.[8] Alternate estimates placed this at 14,000 KIA and 28,000 WIA,[9] Still others claimed 38,000 KIA.[10] During the ï¬�rst half of 1982 estimate was 90,000 Iranians killed.[11] Iran’s casualties in its 1984 offensives resulted in 30,000-50,000 more KIA.[12] In mid-1984 Iran’s KIA were 180,000-500,000 and WIA 500,000-825,000.[13] By 23 March 1985, Iranian KIA may have been 650,000 with 490,000 “seriouslyâ€� wounded.[14] In September 1986 the count of Iranian dead was 240,000.[15] By April 1987 Iran had 600,000-700,000 KIA and twice that number wounded.[16] Iraq claimed 800,000 total Iranian KIA at the time of the cease-ï¬�re.[17] Figure 1 graphically depicts this reporting.

Of�cial Iranian statistics released on 19 September 1988 immediately after the cease �re listed the following casualty �gures:

Mr Beuttel, a former U.S. Army intelligence officer, was employed as a military analyst by Boeing Research & Development at the time of original publication. The views and opinions expressed in this article do not necessarily reflect those of The Boeing Company.

NOTES

[1] Trevor N. Dupuy, Attrition: Forecasting Battle Casualties and Equipment Losses in Modern War, Fairfax, VA: HERO Books, 1990.

[2] Richard Gabriel, Operation Peace for Galilee: The Israeli PLO War in Lebanon, New York: Hill and Wang, 1984. pp. 235-236.

[3] Martin Middlebrook, Task Force: The Falklands War, 1982, Revised Edition; London: Penguin Books, 1987, pp. 382-385; Martin Middlebrook, The Fight for the Malvinas, London: Penguin Books, 1990, pp. 283-284. The low British ratio in the Falklands is a result of many ground forces being killed in mass while still aboard the Sir Galahad. This deflates the ratio vis a vis that actually experienced in ground combat. The shipborne dead should more properly be considered naval casualties.

[4] Anthony Cordesman, The Lessons of Modern War Volume II: The Iran-Iraq War. Boulder CO: Westview Press, 1990, p. 3.

[5] Dilip Hiro, The Longest War: The Iran-Iraq Military Conflict, London: Paladin Books, 1990, p. 4.

[6] Cordesman, The Lessons of Modern War Volume II, p. 144, n. 2.

[7] Hiro, The Longest War, p. 275, n. 26.

[8] Cordesman, The Lessons of Modern War Volume II, p. 120.

[9] Edgar O’Ballance, The Gulf War, London: Brassey’s, 1988, p. 74.

[10] Hiro, The Longest War, p. 54.

[11] O’Ballance, The Gulf War, p. 88.

[12] Cordesman, The Lessons of Modern War Volume II, p. 198.

[13] Ibid, p. 434, Figure 12.3.

[14] Ibid, p. 215, n. 18.

[15] Hiro, The Longest War, p. 175.

[16] Cordesman, The Lessons of Modern War Volume II, p, 261.

[17] Hiro, The Longest War, p. 250.

Counting Holes in Tanks in Tunisia

Counting Holes in Tanks in Tunisia

M4A1 Sherman destroyed in combat in Tunisia, 1943.

[NOTE: This piece was originally posted on 23 August 2016]

A few years ago, I came across a student battle analysis exercise prepared by the U.S. Army Combat Studies Institute on the Battle of Kasserine Pass in Tunisia in February 1943. At the time, I noted the diagram below (click for larger version), which showed the locations of U.S. tanks knocked out during a counterattack conducted by Combat Command C (CCC) of the U.S. 1st Armored Division against elements of the German 10th and 21st Panzer Divisions near the village of Sidi Bou Zid on 15 February 1943. Without reconnaissance and in the teeth of enemy air superiority, the inexperienced CCC attacked directly into a classic German tank ambush. CCC’s drive on Sidi Bou Zid was halted by a screen of German anti-tank guns, while elements of the two panzer divisions attacked the Americans on both flanks. By the time CCC withdrew several hours later, it had lost 46 of 52 M4 Sherman medium tanks, along with 15 officers and 298 men killed, captured, or missing.

Sidi Bou Zid00During a recent conversation with my colleague, Chris Lawrence, I recalled the diagram and became curious where it had originated. It identified the location of each destroyed tank, which company it belonged to, and what type of enemy weapon apparently destroyed it; significant battlefield features; and the general locations and movements of the enemy forces. What it revealed was significant. None of CCC’s M4 tanks were disabled or destroyed by a penetration of their frontal armor. Only one was hit by a German 88mm round from either the anti-tank guns or from the handful of available Panzer Mk. VI Tigers. All of the rest were hit with 50mm rounds from Panzer Mk. IIIs, which constituted most of the German force, or by 75mm rounds from Mk. IV’s. The Americans were not defeated by better German tanks. The M4 was superior to the Mk. III and equal to the Mk. IV; the dreaded 88mm anti-tank guns and Tiger tanks played little role in the destruction. The Americans had succumbed to superior German tactics and their own errors.

Counting dead tanks and analyzing their cause of death would have been an undertaking conducted by military operations researchers, at least in the early days of the profession. As Chris pointed out however, the Kasserine battle took place before the inception of operations research in the U.S. Army.

After a bit of digging online, I still have not been able to establish paternity of the diagram, but I think it was created as part of a battlefield survey conducted by the headquarters staff of either the U.S. 1st Armored Division, or one of its subordinate combat commands. The only reference I can find for it is as part of a historical report compiled by Brigadier General Paul Robinett, submitted to support the preparation of Northwest Africa: Seizing the Initiative in the West by George F. Howe, the U.S. Army Center of Military History’s (CMH) official history volume on U.S. Army operations in North Africa, published in 1956. Robinett was the commander of Combat Command B, U.S. 1st Armored Division during the Battle of Kasserine Pass, but did not participate in the engagement at Sidi Bou Zid. His report is excerpted in a set of readings (pp. 103-120) provided as background material for a Kasserine Pass staff ride prepared by CMH. (Curiously, the account of the 15 February engagement at Sidi Bou Zid in Northwest Africa [pp. 419-422] does not reference Robinett’s study.)

Robinett’s report appeared to include an annotated copy of a topographical map labeled “approximate location of destroyed U.S. tanks (as surveyed three weeks later).� This suggests that the battlefield was surveyed in late March 1943, after U.S. forces had defeated the Germans and regained control of the area.

Sidi Bou Zid02The report also included a version of the schematic diagram later reproduced by CMH. The notes on the map seem to indicate that the survey was the work of staff officers, perhaps at Robinett’s direction, possibly as part of an after-action report.

Sidi Bou Zid03If anyone knows more about the origins of this bit of battlefield archaeology, I would love to know more about it. As far as I know, this assessment was unique, at least in the U.S. Army in World War II.

Is The End Of Stealth Neigh?

Is The End Of Stealth Neigh?

Lockheed F-35 Lightning II. [Creative Commons]

Michael Peck made an interesting catch over at The National Interest. The Defense Advanced Research Projects Agency (DARPA) is soliciting input on potentially disruptive technologies for future warfare. With regard to air warfare, the solicitation baldy states, “Platform stealth may be approaching physical limits.� This led Peck to ask “Did the Pentagon just admit that stealth technology may not work anymore?�

A couple of years ago, a media report that the Chinese had claimed a technological breakthrough in stealth-busting quantum radar capabilities led me to muse about the possible repercussions on U.S. military capabilities. This was during the height of the technology-rooted Third Offset Strategy mania. It seemed to me at the time that concentrating on technological solutions to the U.S.’s strategic challenges might not be the wisest course of action.

The notion that stealth might be a wasting asset seemed somewhat far-fetched when I wrote that, but it appears to have become a much more serious concern. As the DARPA solicitation states, “Our acquisition system is finding it difficult to respond on relevant timescales to adversary progress, which has made the search for next generation capabilities at once more urgent and more futile.� (p. 5)

Er, yikes.

Dupuy/DePuy

Dupuy/DePuy

Trevor N. Dupuy (1916-1995) and General William E. DePuy (1919-1992)

I first became acquainted with Trevor Dupuy and his work after seeing an advertisement for his book Numbers, Prediction & War in Simulation Publications, Inc.’s (SPI) Strategy & Tactics war gaming magazine way back in the late 1970s. Although Dupuy was already a prolific military historian, this book brought him to the attention of an audience outside of the insular world of the U.S. government military operations research and analysis community.

Ever since, however, Trevor Dupuy has been occasionally been confused with one of his contemporaries, U.S. Army General William E. DePuy. DePuy was notable in his own right, primarily as the first commander of the U.S. Army Training and Doctrine Command (TRADOC) from 1973 to 1977, and as one of the driving intellectual forces behind the effort to reorient the U.S. Army back to conventional warfare following the Vietnam War.

The two men had a great deal in common. They were born within three years of one another and both served in the U.S. Army during World War II. Both possessed an analytical bent and each made significant contributions to institutional and public debates about combat and warfare in the late 20th century. Given that they tilled the same topical fields at about the same time, it does not seem too odd that they were mistaken for each other.

Perhaps the most enduring link between the two men has been a shared name, though they spelled and pronounced it differently. The surname Dupuy is of medieval French origin and has been traced back to LePuy, France, in the province of Languedoc. It has several variant spellings, including DePuy and Dupuis. The traditional French pronunciation is “do-PWEE.� This is how Trevor Dupuy said his name.

However, following French immigration to North America beginning in the 17th century, the name evolved an anglicized spelling, DePuy (or sometimes Depew), and pronunciation, “deh-PEW.� This is the way General DePuy said it.

It is this pronunciation difference in conversation that has tipped me off personally to the occasional confusion in identities. Though rare these days, it still occurs. While this is a historical footnote, it still seems worth gently noting that Trevor Dupuy and William DePuy were two different people.

TDI Friday Read: Lethality, Dispersion, And Mass On Future Battlefields

TDI Friday Read: Lethality, Dispersion, And Mass On Future Battlefields

Armies have historically responded to the increasing lethality of weapons by dispersing mass in frontage and depth on the battlefield. Will combat see a new period of adjustment over the next 50 years like the previous half-century, where dispersion continues to shift in direct proportion to increased weapon range and precision, or will there be a significant change in the character of warfare?

One point of departure for such an inquiry could be the work of TDI President Chris Lawrence, who looked into the nature of historical rates of dispersion in combat from 1600 to 1991.

The Effects Of Dispersion On Combat

As he explained,

I am focusing on this because l really want to come up with some means of measuring the effects of a “revolution in warfare.� The last 400 years of human history have given us more revolutionary inventions impacting war than we can reasonably expect to see in the next 100 years. In particular, I would like to measure the impact of increased weapon accuracy, improved intelligence, and improved C2 on combat.

His tentative conclusions were:

  1. Dispersion has been relatively constant and driven by factors other than �repower from 1600-1815.
  2. Since the Napoleonic Wars, units have increasingly dispersed (found ways to reduce their chance to be hit) in response to increased lethality of weapons.
  3. As a result of this increased dispersion, casualties in a given space have declined.
  4. The ratio of this decline in casualties over area have been roughly proportional to the strength over an area from 1600 through WWI. Starting with WWII, it appears that people have dispersed faster than weapons lethality, and this trend has continued.
  5. In effect, people dispersed in direct relation to increased firepower from 1815 through 1920, and then after that time dispersed faster than the increase in lethality.
  6. It appears that since WWII, people have gone back to dispersing (reducing their chance to be hit) at the same rate that �repower is increasing.
  7. Effectively, there are four patterns of casualties in modem war:

Period 1 (1600 – 1815): Period of Stability

  • Short battles
  • Short frontages
  • High attrition per day
  • Constant dispersion
  • Dispersion decreasing slightly after late 1700s
  • Attrition decreasing slightly after mid-1700s.

Period 2 (1816 – 1905): Period of Adjustment

  • Longer battles
  • Longer frontages
  • Lower attrition per day
  • Increasing dispersion
  • Dispersion increasing slightly faster than lethality

Period 3 (1912 – 1920): Period of Transition

  • Long battles
  • Continuous frontages
  • Lower attrition per day
  • Increasing dispersion
  • Relative lethality per kilometer similar to past, but lower
  • Dispersion increasing slightly faster than lethality

Period 4 (1937 – present): Modern Warfare

  • Long battles
  • Continuous frontages
  • Low attrition per day
  • High dispersion (perhaps constant?)
  • Relatively lethality per kilometer much lower than the past
  • Dispersion increased much faster than lethality going into the period.
  • Dispersion increased at the same rate as lethality within the period.

Chris based his study on previous work done by Trevor Dupuy and his associates, which established a pattern in historical combat between lethality, dispersion, and battlefield casualty rates.

Trevor Dupuy and Historical Trends Related to Weapon Lethality

What Is The Relationship Between Rate of Fire and Military Effectiveness?

Human Factors In Warfare: Dispersion

There is no way to accurately predict the future relationship between weapon lethality and dispersion on the battlefield, but we should question whether or not current conception of combat reflect consideration of the historical trends.

Attrition In Future Land Combat

The Principle Of Mass On The Future Battlefield

SINKEX

SINKEX

U.S.S. Racine, serving as a target ship for a sinking exercise on 12 July 2018. [YouTube Screencap/The Drive]

The U.S. Navy has uploaded video of a recent sinking exercise (SINKEX) conducted during the 2018 Rim Of The Pacific (RIMPAC) exercises, hosted bi-annually by the U.S. Pacific Fleet based in Honolulu, Hawaii. As detailed by Tyler Rogoway in The Drive, the target of the SINKEX on 12 July 2018 was the U.S.S. Racine, a Newport class Landing Ship-Tank amphibious ship decommissioned 25 years ago.

As dramatic as the images are, the interesting thing about this demonstration was that it included a variety of land-based weapons firing across domains to strike a naval target. The U.S. Army successfully fired a version of the Naval Strike Missile that it is interested in acquiring, as well as a half-dozen High-Mobility Artillery Rocket System [HIMARS] rounds.Japanese troops fired four Type 12 land-based anti-ship missiles at the Racine as well. For good measure, an Australian P-8 Poseidon also hit the target with an air-launched AGM-84 Harpoon.

The coup de gras was provided by a Mk-48 torpedo launched from the Los Angeles class nuclear fast attack submarine USS Olympia, which broke the Racine‘s back and finally sank it an hour later.

Security On The Cheap: Whither Security Force Assistance (SFA)?

Security On The Cheap: Whither Security Force Assistance (SFA)?

A U.S. Army Special Forces weapons sergeant observes a Niger Army soldier during marksmanship training as part of Exercise Flintlock 2017 in Diffa, Niger, February 28, 2017. [U.S. Army/SFC Christopher Klutts/AFRICOM]

Paul Staniland, a professor of political science at the University of Chicago, has a new article in The Washington Post‘s Monkey Cage blog that contends that the U.S. is increasingly relying on a strategy of “violence management� in dealing with the various counterinsurgency, counterterrorism, and stability conflicts (i.e. “small wars�) it is involved with around the world.

As he describes it,

America’s “violence management� strategy relies on light ground forces, airpower and loose partnerships with local armed actors. Its aim is to degrade and disrupt militant organizations within a chaotic, fractured political landscape, not to commit large numbers of forces and resources to building robust new governments.

…Violence management sidesteps politics in favor of sustained military targeting. This approach takes for granted high levels of political disorder, illiberal and/or fractured local regimes, and protracted conflicts. The goal is disrupting militant organizations without trying to build new states, spur economic development, or invest heavily in post-conflict reconstruction.

…It has three core elements: a light U.S. ground force commitment favoring special forces, heavy reliance on airpower and partnerships of convenience with local militias, insurgents, and governments.

…Politically, this strategy reduces both costs and commitments. America’s wars stay off the front pages, the U.S. can add or drop local partners as it sees fit, and U.S. counterterror operations remain opaque.

Staniland details the risks associated with this strategy but does not assess its effectiveness. He admits to ambivalence on that in an associated discussion on Twitter.

Whither SFA?

Partnering with foreign government, organizations, and fighters to counter national security threats is officially known by the umbrella terms Security Force Assistance in U.S. government policy terminology. It is intended to help defend host nations from external and internal threats, and encompasses foreign internal defense (FID), counterterrorism (CT), counterinsurgency (COIN), and stability operations. The U.S. has employed this approach success since World War II.

Has it been effective? Interestingly enough, this question has not been seriously examined. The best effort so far is a study done by Stephen Biddle, Julia Macdonald, and Ryan Baker, “Small Footprint, Small Payoff: The Military Effectiveness of Security Force Assistance,� published the Journal of Strategic Studies earlier this year. It concluded:

We find important limitations on SFA’s military utility, stemming from agency problems arising from systematic interest misalignment between the US and its typical partners. SFA’s achievable upper bound is modest and attainable only if US policy is intrusive and conditional, which it rarely is. For SFA, small footprints will usually mean small payoffs.

A Mixed Recent Track Record

SFA’s recent track record has been mixed. It proved conditionally successful countering terrorists and insurgents in the Philippines and in the coalition effort to defeat Daesh in Iraq and Syria; and it handed a black eye to Russian sponsored paramilitary forces in Syria earlier this year. However, a train and advice mission for the moderate Syrian rebels failed in 2015; four U.S. Army Special Forces soldiers died in an ambush during a combined patrol in Niger in October 2017; there are recurring cases of U.S.-trained indigenous forces committing human rights abuses; and the jury remains out on the fate of Afghanistan.

The U.S. Army’s proposed contribution to SFA, the Security Forces Assistance Brigade, is getting its initial try-out in Afghanistan right now. The initial reports indicate that it has indeed boosted SFA capacity there. What remains to be seen is whether that will make a difference. The 1st SFAB suffered its first combat casualties earlier this month when Corporal Joseph Maciel was killed and two others were wounded in an insider attack at Tarin Kowt in Uruzgan province.

Will a strategy of violence management prove successful over the longer term? Stay tuned…

TDI Friday Read: Measuring The Effects of Combat in Cities

TDI Friday Read: Measuring The Effects of Combat in Cities

Between 2001 and 2004, TDI undertook a series of studies on the effects of urban combat in cities for the U.S. Army Center for Army Analysis (CAA). These studies examined a total of 304 cases of urban combat at the divisional and battalion level that occurred between 1942 and 2003, as well as 319 cases of concurrent non-urban combat for comparison.

The primary findings of Phases I-III of the study were:

  • Urban terrain had no significantly measurable influence on the outcome of battle.
  • Attacker casualties in the urban engagements were less than in the non-urban engagements and the casualty exchange ratio favored the attacker as well.
  • One of the primary effects of urban terrain is that it slowed opposed advance rates. The average advance rate in urban combat was one-half to one-third that of non-urban combat.
  • There is little evidence that combat operations in urban terrain resulted in a higher linear density of troops.
  • Armor losses in urban terrain were the same as, or lower than armor losses in non-urban terrain. In some cases it appears that armor losses were significantly lower in urban than non-urban terrain.
  • Urban terrain did not significantly influence the force ratio required to achieve success or effectively conduct combat operations.
  • Overall, it appears that urban terrain was no more stressful a combat environment during actual combat operations than was non-urban terrain.
  • Overall, the expenditure of ammunition in urban operations was not greater than that in non-urban operations. There is no evidence that the expenditure of other consumable items (rations; water; or fuel, oil, or lubricants) was significantly different in urban as opposed to non-urban combat.
  • Since it was found that advance rates in urban combat were significantly reduced, then it is obvious that these two effects (advance rates and time) were interrelated. It does appear that the primary impact of urban combat was to slow the tempo of operations.

In order to broaden and deepen understanding of the effects of urban combat, TDI proposed several follow-up studies. To date, none of these have been funded:

  1. Conduct a detailed study of the Battle of Stalingrad. Stalingrad may also represent one of the most intense examples of urban combat, so may provide some clues to the causes of the urban outliers.
  2. Conduct a detailed study of battalion/brigade-level urban combat. This would begin with an analysis of battalion-level actions from the first two phases of this study (European Theater of Operations and Eastern Front), added to the battalion-level actions completed in this third phase of the study. Additional battalion-level engagements would be added as needed.
  3. Conduct a detailed study of the outliers in an attempt to discover the causes for the atypical nature of these urban battles.
  4. Conduct a detailed study of urban warfare in an unconventional warfare setting.

Details of the Phase I-III study reports and conclusions can be found below:

Measuring The Effects Of Combat In Cities, Phase I

Measuring the Effects of Combat in Cities, Phase II – part 1

Measuring the Effects of Combat in Cities, Phase II – part 2

Measuring the Effects of Combat in Cities, Phase III – part 1

Measuring the Effects of Combat in Cities, Phase III – part 2

Measuring the Effects of Combat in Cities, Phase III – part 2.1

Measuring the Effects of Combat in Cities, Phase III – part 3

Urban Phase IV – Stalingrad

Urban Combat in War by Numbers

Dupuy’s Verities: The Utility Of Defense

Dupuy’s Verities: The Utility Of Defense

Battle of Franklin, 1864 by Kurz and Allison. Restoration by Adam Cuerden [Wikimedia Commons]

The third of Trevor Dupuy’s Timeless Verities of Combat is:

Defensive posture is necessary when successful offense is impossible.

From Understanding War (1987):

Even though offensive action is essential to ultimate combat success, a combat commander opposed by a more powerful enemy has no choice but to assume a defensive posture. Since defensive posture automatically increases the combat power of his force, the defending commander at least partially redresses the imbalance of forces. At a minimum he is able to slow down the advance of the attacking enemy, and he might even beat him. In this way, through negative combat results, the defender may ultimately hope to wear down the attacker to the extent that his initial relative weakness is transformed into relative superiority, thus offering the possibility of eventually assuming the offensive and achieving positive combat results. The Franklin and Nashville Campaign of our Civil War, and the El Alamein Campaign of World War II are examples.

Sometimes the commander of a numerically superior offensive force may reduce the strength of portions of his force in order to achieve decisive superiority for maximum impact on the enemy at some other critical point on the battle�eld, with the result that those reduced-strength components are locally outnumbered. A contingent thus reduced in strength may therefore be required to assume a defensive posture, even though the overall operational posture of the marginally superior force is offensive, and the strengthened contingent of the same force is attacking with the advantage of superior combat power. A classic example was the role of Davout at Auerstadt when Napoléon was crushing the Prussians at Jena. Another is the role played by “Stonewall� Jackson’s corps at the Second Battle of Bull Run. [pp. 2-3]

This verity is both derivative of Dupuy’s belief that the defensive posture is a human reaction to the lethal environment of combat, and his concurrence with Clausewitz’s dictum that the defense is the stronger form of combat. Soldiers in combat will sometimes reach a collective conclusion that they can no longer advance in the face of lethal opposition, and will stop and seek cover and concealment to leverage the power of the defense. Exploiting the multiplying effect of the defensive is also a way for a force with weaker combat power to successfully engage a stronger one.

It also relates to the principle of war known as economy of force, as defined in the 1954 edition of the U.S. Army’s Field Manual FM 100-5, Field Service Regulations, Operations:

Minimum essential means must be employed at points other than that of decision. To devote means to unnecessary secondary efforts or to employ excessive means on required secondary efforts is to violate the principle of both mass and the objective. Limited attacks, the defensive, deception, or even retrograde action are used in noncritical areas to achieve mass in the critical area.

These concepts are well ingrained in modern U.S. Army doctrine. FM 3-0 Operations (2017) summarizes the defensive this way:

Defensive tasks are conducted to defeat an enemy attack, gain time, economize forces, and develop conditions favorable for offensive or stability tasks. Normally, the defense alone cannot achieve a decisive victory. However, it can set conditions for a counteroffensive or counterattack that enables Army forces to regain and exploit the initiative. Defensive tasks are a counter to enemy offensive actions. They defeat attacks, destroying as much of an attacking enemy as possible. They also preserve and maintain control over land, resources, and populations. The purpose of defensive tasks is to retain key terrain, guard populations, protect lines of communications, and protect critical capabilities against enemy attacks and counterattacks. Commanders can conduct defensive tasks to gain time and economize forces, so offensive tasks can be executed elsewhere. [Para 1-72]

Another Look At The Role Of Russian Mercenaries In Syria

Another Look At The Role Of Russian Mercenaries In Syria

Russian businessman Yevgeny Prigozhin and Russian President Vladimir Putin. Prigozhin—who reportedly has ties to Putin, the Russian Ministry of Defense, and Russian mercenaries—was indicted by Special Counsel Robert Mueller on 16 February 2018 for allegedly funding and guiding a Russian government effort to interfere with the 2016 U.S. presidential election. [Alexei Druzhinin/AP]

As I recently detailed, many details remain unclear regarding the 7 February 2018 engagement in Deir Ezzor, Syria, between Russian mercenaries, Syrian government troops, and militia fighters and U.S. Special Operations Forces, U.S. Marines, and their partnered Kurdish and Syrian militia forces. Aside from questions as to just how many Russians participated and how many were killed, the biggest mystery is why the attack occurred at all.

Kimberly Marten, chair of the Political Science Department at Barnard College and director of the Program on U.S.-Russia Relations at Columbia University’s Harriman Institute, takes another look at this in a new article on War on the Rocks.

Why did Moscow initially deny any Russians’ involvement, and then downplay the casualty numbers? And why didn’t the Russian Defense Ministry stop the attackers from crossing into the American zone, or warn them about the likelihood of a U.S. counterstrike? Western media have offered two contending explanations: that Wagner acted without the Kremlin’s authorization, or that this was a Kremlin-approved attack that sought to test Washington while maintaining plausible deniability. But neither explanation fully answers all of the puzzles raised by the publicly available evidence, even though both help us understand more generally the opaque relationship between the Russian state and these forces.

After reviewing what is known about the relationship between the Russian government and the various Russian mercenary organizations, Marten proposes another explanation.

A different, or perhaps additional, rationale takes into account the ruthless infighting between Russian security forces that goes on regularly, while Russian President Vladimir Putin looks the other way. Russian Defense Ministry motives in Deir al-Zour may actually have centered on domestic politics inside Russia — and been directed against Putin ally and Wagner backer Yevgeny Prigozhin.

She takes a detailed look at the institutional relationships in question and draws a disquieting conclusion:

We may never have enough evidence to solve definitively the puzzles of Russian behavior at Deir al-Zour. But an understanding of Russian politics and security affairs allows us to better interpret the evidence we do have. Since Moscow’s employment of groups like Wagner appears to be a growing trend, U.S. and allied forces should consider the possibility that in various locations around the world, they might end up inadvertently, and dangerously, ensnared in Russia’s internal power struggles.

As with the Institute for the Study of War’s contention that the Russians are deliberately testing U.S. resolve in the Middle East, Marten’s interpretation that the actions of various Russian mercenary groups might be the result of internal Russian politics points to the prospect of further military adventurism only loosely connected to Russian foreign policy direction. Needless to say, the implications of this are ominous in a region of the world already beset by conflict and regional and international competition.

Chris Lawrence Interviewed About America’s Modern Wars

Chris Lawrence Interviewed About America’s Modern Wars

TDI President Chris Lawrence was recently interviewed on The Donna Seebo Show about his 2015 book, America’s Modern War: Understanding Iraq, Afghanistan and Vietnam.

The 27 June 2018 interview can be listed to below.

 

Back To The Future: The Return Of Sieges To Modern Warfare

Back To The Future: The Return Of Sieges To Modern Warfare

Ruins of the northern Syrian city of Aleppo, which was besieged by Syrian government forces from July 2012 to December 2016. [Getty Images]

U.S. Army Major Amos Fox has published a very intriguing analysis in the Association of the U.S. Army’s Institute of Land Warfare Landpower Essay series, titled “The Reemergence of the Siege: An Assessment of Trends in Modern Land Warfare.� Building upon some of his previous work (here and here), Fox makes a case that sieges have again become a salient feature in modern warfare: “a brief survey of history illustrates that the siege is a defining feature of the late 20th and early 21st centuries; perhaps today is the siege’s golden era.�

Noting that neither U.S. Army nor joint doctrine currently addresses sieges, Fox adopts the dictionary definition: “A military blockade of a city or fortified place to compel it to surrender, or a persistent or serious attack.� He also draws a distinction between a siege and siege warfare; “siege warfare implies a way of battle, whereas a siege implies one tool of many in the kitbag of warfare.� [original emphasis]

He characterizes modern sieges thusly:

The contemporary siege is a blending of the traditional definition with concentric attacks. The modern siege is not necessarily characterized by a blockade, but more by an isolation of an adversary through encirclement while maintaining sufficient firepower against the besieged to ensure steady pressure. The modern siege can be terrain-focused, enemy-focused or a blending of the two, depending on the action of the besieged and the goal of the attacker. The goal of the siege is either to achieve a decision, whether politically or militarily, or to slowly destroy the besieged.

He cites the siege of Sarajevo (1992-1996) as the first example of the modern phenomenon. Other cases include Grozny (1999-2000); Aleppo, Ghouta, Kobani, Raqaa, and Deir Ezzor in Syria (2012 to 2018); Mosul (2016-2017); and Ilovaisk, Second Donetsk Airport, and Debal’tseve in the Ukraine (2014-present).

Fox notes that employing sieges carries significant risk. Most occur in urban areas. The restrictive nature of this terrain serves as a combat multiplier for inferior forces, allowing them to defend effectively against a much larger adversary. This can raise the potential military costs of conducting a siege beyond what an attacker is willing or able to afford.

Modern sieges also risk incurring significant political costs through collateral civilian deaths or infrastructure damage that could lead to a loss of international credibility or domestic support for governments that attempt them.

However, Fox identifies a powerful incentive that can override these disadvantages: when skillfully executed, a siege affords an opportunity for an attacker to contain and tie down defending forces, which can then be methodically destroyed. Despite the risks, he believes the apparent battlefield decisiveness of recent sieges means they will remain part of modern warfare.

Given modern sieges’ destructiveness and sharp impact on the populations on which they are waged, almost all actors (to include the United States) demonstrate a clear willingness—politically and militarily—to flatten cities and inflict massive suffering on besieged populations in order to capitalize on the opportunities associated with having their adversaries centralized.

Fox argues that sieges will be a primary tactic employed by proxy military forces, which are currently being used effectively by a variety of state actors in the Eastern Europe and the Middle East. “[A]s long as intermediaries are doing the majority of fighting and dying within a siege—or holding the line for the siege—it is a tactic that will continue to populate current and future battlefields.�

This is an excellent analysis. Go check it out.

The Combat Value of Surprise

The Combat Value of Surprise

American soldiers being marched down a road after capture by German troops in the Ardennes, December 1944.

American soldiers being marched down a road after capture by German troops in the Ardennes, December 1944.

[This article was originally posted on 1 December 2016]

In his recent analysis of the role of conventional armored forces in Russian hybrid warfare, U.S. Army Major Amos Fox noted an emphasis on tactical surprise.

Changes to Russian tactics typify the manner in which Russia now employs its ground force. Borrowing from the pages of military theorist Carl von Clausewitz, who stated, “It is still more important to remember that almost the only advantage of the attack rests on its initial surprise,� Russia’s contemporary operations embody the characteristic of surprise. Russian operations in Georgia and Ukraine demonstrate a rapid, decentralized attack seeking to temporally dislocate the enemy, triggering the opposing forces’ defeat.

Tactical surprise enabled by electronic, cyber, information and unconventional warfare capabilities, combined with mobile and powerful combined arms brigade tactical groups, and massive and lethal long-range fires provide Russian Army ground forces with formidable combat power.

Trevor Dupuy considered the combat value of surprise to be important enough to cite it as one of his “timeless verities of combat.�

Surprise substantially enhances combat power. Achieving surprise in combat has always been important. It is perhaps more important today than ever. Quantitative analysis of historical combat shows that surprise has increased the combat power of military forces in those engagements in which it was achieved. Surprise has proven to be the greatest of all combat multipliers. It may be the most important of the Principles of War; it is at least as important as Mass and Maneuver.

In addition to acting as combat power multiplier, Dupuy observed that surprise decreases the casualties of a surprising force and increases those of a surprised one. Surprise also enhances advance rates for forces that achieve it.

In his combat models, Dupuy categorized tactical surprise as complete, substantial, and minor; defining the level achieved was a matter of analyst judgement. The combat effects of surprise in battle would last for three days, declining by one-third each day.

He developed two methods for applying the effects of surprise in calculating combat power, each yielding the same general overall influence. In his original Quantified Judgement Model (QJM) detailed in Numbers, Predictions and War: The Use of History to Evaluate and Predict the Outcome of Armed Conflict (1977), factors for surprise were applied to calculations for vulnerability and mobility, which in turn were applied to the calculation of overall combat power. The net value of surprise on combat power ranged from a factor of about 2.24 for complete surprise to 1.10 for minor surprise.

For a simplified version of his combat power calculation detailed in Attrition: Forecasting Battle Casualties and Equipment Losses in Modern War (1990), Dupuy applied a surprise combat multiplier value directly to the calculation of combat power. These figures also ranged between 2.20 for complete surprise and 1.10 for minor surprise.

Dupuy established these values for surprise based on his judgement of the difference between the calculated outcome of combat engagements in his data and theoretical outcomes based on his models. He never validated them back to his data himself. However, TDI President Chris Lawrence recently did conduct substantial tests on TDI’s expanded combat databases in the context of analyzing the combat value of situational awareness. The results are described in detail in his forthcoming book, War By Numbers: Understanding Conventional Combat.

Are Russia And Iran Planning More Proxy Attacks On U.S. Forces And Their Allies In Syria?

Are Russia And Iran Planning More Proxy Attacks On U.S. Forces And Their Allies In Syria?

Members of the Liwa al-Baqir Syrian Arab militia, which is backed by Iran and Russia. [Navvar Åžaban (N.Oliver)/Twitter]

Over at the Institute for the Study of War (ISW), Jennifer Cafarella, Matti Suomenaro, and Catherine Harris have published an analysis predicting that Iran and Russia are preparing to attack U.S. forces and those of its Syrian Democratic Forces (SDF) allies in eastern Syria. By using tribal militia proxies and Russian mercenary troops to inflict U.S. casualties and stoke political conflict among the Syrian factions, Cafarella, et al, assert that Russia and Iran are seeking to compel the U.S. to withdraw its forces from Syria and break up the coalition that defeated Daesh.

If true, this effort would represent an escalation of a strategic gambit that led to a day-long battle between tribal militias loyal to the regime of Syrian President Bashar al Assad, Syrian government troops, and Russian mercenaries and U.S. allied Kurdish and SDF fighters along with their U.S. Marine and Special Operations Forces (SOF) advisors in February in the eastern Syrian city of Deir Ezzor. This resulted in a major defeat of the pro-Assad forces, which suffered hundreds of casualties–including dozens of Russians–from U.S. air and ground-based fires.

To support their contention, Cafarella, et al, offer a pattern of circumstantial evidence that does not quite amount to a definitive conclusion. ISW has a clear policy preference to promote: “The U.S. must commit to defending its partners and presence in Eastern Syria in order to prevent the resurgence of ISIS and deny key resources to Iran, Russia, and Assad.� It has criticized the U.S.’s failure to hold Russia culpable for the February attack in Deir Ezzor as “weak,� thereby undermining its policy in Syria and the Middle East in the face of Russian “hybrid� warfare efforts.

Yet, there is circumstantial evidence that the February battle in Deir Ezzor was the result of deliberate Russian government policy. ISW has identified Russian and Iranian intent to separate SDF from U.S. support to isolate and weaken it. President Assad has publicly made clear his intent to restore his rule over all of Syria. And U.S. President Donald Trump has yet to indicate that he has changed his intent to withdraw U.S. troops from Syria.

Russian and Iranian sponsorship and support for further aggressive action by pro-regime forces and proxies against U.S. troops and their Syrian allies could easily raise tensions dramatically with the U.S. Since it is difficult to see Russian and Iranian proxies succeeding with new Deir Ezzor-style attacks, they might be tempted to try to shoot down a U.S. aircraft or attempt a surprise raid on a U.S. firebase instead. Should Syrian regime or Russian mercenary forces manage to kill or wound U.S. troops, or bring down a U.S. manned aircraft, the military and political repercussions could be significant.

Despite the desire of President Trump to curtail U.S. involvement in Syria, there is real potential for the conflict to mushroom.

Recent Developments In “Game Changing” Precision Fires Technology

Recent Developments In “Game Changing” Precision Fires Technology

Nammo’s new 155mm Solid Fuel Ramjet projectile [The Drive]

From the “Build A Better Mousetrap� files come a couple of new developments in precision fires technology. The U.S. Army’s current top modernization priority is improving its long-range precision fires capabilities.

Joseph Trevithick reports in The Drive that Nammo, a Norwegian/Finnish aerospace and defense company, recently revealed that it is developing a solid-fueled, ramjet-powered, precision projectile capable of being fired from the ubiquitous 155mm howitzer. The projectile, which is scheduled for live-fire testing in 2019 or 2020, will have a range of more than 60 miles.

The Army’s current self-propelled and towed 155mm howitzers have a range of 12 miles using standard ammunition, and up to 20 miles with rocket-powered munitions. Nammo’s ramjet projectile could effectively double that, but the Army is also looking into developing a new 155mm howitzer with a longer barrel that could fully exploit the capabilities of Nammo’s ramjet shell and other new long-range precision munitions under development.

Anna Ahronheim has a story in The Jerusalem Post about a new weapon developed by the Israeli Rafael Advanced Defense Systems Ltd. called the FireFly. FireFly is a small, three-kilogram, loitering munition designed for use by light ground maneuver forces to deliver precision fires against enemy forces in cover. Similar to a drone, FireFly can hover for up to 15 minutes before delivery.

In a statement, Rafael claimed that “Firefly will essentially eliminate the value of cover and with it, the necessity of long-drawn-out firefights. It will also make obsolete the old infantry tactic of firing and maneuvering to eliminate an enemy hiding behind cover.�

Nammo and Rafael have very high hopes for their wares:

“This [155mm Solid Fuel Ramjet] could be a game-changer for artillery,� according to Thomas Danbolt, Vice President of Nammo’s Large Caliber Ammunitions division.

“The impact of FireFly on the infantry is revolutionary, fundamentally changing small infantry tactics,� Rafael has asserted.

Expansive claims for the impact of new technology are not new, of course. Oribtal ATK touted its XM25 Counter Defilade Target Engagement (CDTE) precision-guided grenade launcher along familiar lines, claiming that “The introduction of the XM25 is akin to other revolutionary systems such as the machine gun, the airplane and the tank, all of which changed battlefield tactics.�

Similar in battlefield effect to the FireFly, the Army cancelled its contract for the XM25 in 2017 after disappointing results in field tests.

Are There Only Three Ways of Assessing Military Power?

Are There Only Three Ways of Assessing Military Power?

military-power[This article was originally posted on 11 October 2016]

In 2004, military analyst and academic Stephen Biddle published Military Power: Explaining Victory and Defeat in Modern Battle, a book that addressed the fundamental question of what causes victory and defeat in battle. Biddle took to task the study of the conduct of war, which he asserted was based on “a weak foundation� of empirical knowledge. He surveyed the existing literature on the topic and determined that the plethora of theories of military success or failure fell into one of three analytical categories: numerical preponderance, technological superiority, or force employment.

Numerical preponderance theories explain victory or defeat in terms of material advantage, with the winners possessing greater numbers of troops, populations, economic production, or financial expenditures. Many of these involve gross comparisons of numbers, but some of the more sophisticated analyses involve calculations of force density, force-to-space ratios, or measurements of quality-adjusted “combat power.� Notions of threshold “rules of thumb,� such as the 3-1 rule, arise from this. These sorts of measurements form the basis for many theories of power in the study of international relations.

The next most influential means of assessment, according to Biddle, involve views on the primacy of technology. One school, systemic technology theory, looks at how technological advances shift balances within the international system. The best example of this is how the introduction of machine guns in the late 19th century shifted the advantage in combat to the defender, and the development of the tank in the early 20th century shifted it back to the attacker. Such measures are influential in international relations and political science scholarship.

The other school of technological determinacy is dyadic technology theory, which looks at relative advantages between states regardless of posture. This usually involves detailed comparisons of specific weapons systems, tanks, aircraft, infantry weapons, ships, missiles, etc., with the edge going to the more sophisticated and capable technology. The use of Lanchester theory in operations research and combat modeling is rooted in this thinking.

Biddle identified the third category of assessment as subjective assessments of force employment based on non-material factors including tactics, doctrine, skill, experience, morale or leadership. Analyses on these lines are the stock-in-trade of military staff work, military historians, and strategic studies scholars. However, international relations theorists largely ignore force employment and operations research combat modelers tend to treat it as a constant or omit it because they believe its effects cannot be measured.

The common weakness of all of these approaches, Biddle argued, is that “there are differing views, each intuitively plausible but none of which can be considered empirically proven.� For example, no one has yet been able to find empirical support substantiating the validity of the 3-1 rule or Lanchester theory. Biddle notes that the track record for predictions based on force employment analyses has also been “poor.� (To be fair, the problem of testing theory to see if applies to the real world is not limited to assessments of military power, it afflicts security and strategic studies generally.)

So, is Biddle correct? Are there only three ways to assess military outcomes? Are they valid? Can we do better?

Should The Marines Take Responsibility For Counterinsurgency?

Should The Marines Take Responsibility For Counterinsurgency?

United States Marines in Nacaragua with the captured flag of Augusto César Sandino, 1932. [Wikipedia]

Sydney J. Freedberg, Jr recently reported in Breaking Defense that the Senate Armed Services Committee (SASC), led by chairman Senator John McCain, has asked Defense Secretary James Mattis to report on progress toward preparing the U.S. armed services to carry out the recently published National Defense Strategy oriented toward potential Great Power conflict.

Among a series of questions that challenge existing service roles and missions, Freedberg reported that the SASC wants to know if responsibility for carrying out “low-intensity missions,� such as counterinsurgency, should be the primary responsibility of one service:

Make the Marines a counterinsurgency force? The Senate starts by asking whether the military “would benefit from having one Armed Force dedicated primarily to low-intensity missions, thereby enabling the other Armed Forces to focus more exclusively on advanced peer competitors.� It quickly becomes clear that “one Armed Force� means “the Marines.� The bill questions the Army’s new Security Force Assistance Brigades (SFABs) and suggest shifting that role to the Marines. It also questions the survivability of Navy-Marine flotillas in the face of long-range sensors and precision missiles — so-called Anti-Access/Area Denial (A2/AD) systems — and asked whether the Marines’ core mission, “amphibious forced entry operations,� should even “remain an enduring mission for the joint force� given the difficulties. It suggests replacing large-deck amphibious ships, which carry both Marine aircraft and landing forces, with small aircraft carriers that could carry “larger numbers of more diverse strike aircraft� (but not amphibious vehicles or landing craft). Separate provisions of the bill restrict spending on the current Amphibious Assault Vehicle (Sec. 221) and the future Amphibious Combat Vehicle (Sec. 128) until the Pentagon addresses the viability of amphibious landings.

This proposed change would drastically shift the U.S. Marine Corps’ existing role and missions, something that will inevitably generate political and institutional resistance. Deemphasizing the ability to execute amphibious forced entry operations would be both a difficult strategic choice and an unpalatable political decision to fundamentally alter the Marine Corps’ institutional identity. Amphibious warfare has defined the Marines since the 1920s. It would, however, be a concession to the reality that technological change is driving the evolving character of warfare.

Perhaps This Is Not A Crazy Idea After All

The Marine Corps also has a long history with so-called “small wars�: contingency operations and counterinsurgencies. Tasking the Marines as the proponents for low-intensity conflict would help alleviate one of the basic conundrums facing U.S. land power: the U.S. Army’s inability to optimize its force structure due to the strategic need to be prepared to wage both low-intensity conflict and conventional combined arms warfare against peer or near peer adversaries. The capabilities needed for waging each type of conflict are diverging, and continuing to field a general purpose force is running an increasing risk of creating an Army dangerously ill-suited for either. Giving the Marine Corps responsibility for low-intensity conflict would permit the Army to optimize most of its force structure for combined arms warfare, which poses the most significant threat to American national security (even if it less likely than potential future low-intensity conflicts).

Making the Marines the lead for low-intensity conflict would also play to another bulwark of its institutional identity, as the world’s premier light infantry force (“Every Marine is a rifleman�). Even as light infantry becomes increasingly vulnerable on modern battlefields dominated by the lethality of long-range precision firepower, its importance for providing mass in irregular warfare remains undiminished. Technology has yet to solve the need for large numbers of “boots on the ground� in counterinsurgency. The crucial role of manpower in counterinsurgency makes it somewhat short-sighted to follow through with the SASC’s suggestions to eliminate the Army’s new Security Force Assistance Brigades (SFABs) and to reorient Special Operations Forces (SOF) toward support for high-intensity conflict. As recent, so-called “hybrid warfare� conflicts in Lebanon and the Ukraine have demonstrated, future battlefields will likely involve a mix of combined arms and low-intensity warfare. It would be risky to assume that Marine Corps’ light infantry, as capable as they are, could tackle all of these challenges alone.

Giving the Marines responsibility for low-intensity conflict would not likely require a drastic change in force structure. Marines could continue to emphasize sea mobility and littoral warfare in circumstances other than forced entry. Giving up the existing large-deck amphibious landing ships would be a tough concession, admittedly, one that would likely reduce the Marines’ effectiveness in responding to contingencies.

It is not likely that a change as big as this will be possible without a protracted political and institutional fight. But fresh thinking and drastic changes in the U.S.’s approach to warfare are going to be necessary to effectively address both near and long-term strategic challenges.

Senate Armed Service Committee Proposes Far-Reaching Changes To U.S. Military

Senate Armed Service Committee Proposes Far-Reaching Changes To U.S. Military

Senate Armed Services Committee members (L-R) Sen. James Inhofe (R-OK), Chairman John McCain (R-AZ) and ranking member Sen. Jack Reed (R-RI) listen to testimony in the Dirksen Senate Office Building on Capitol Hill July 11, 2017 in Washington, D.C. [CREDIT: Chip Somodevilla—Getty Images]

In an article in Breaking Defense last week, Sydney J. Freedberg, Jr. pointed out that the Senate Armed Services Committee (SASC) has requested that Secretary of Defense James Mattis report back by 1 February 2019 on what amounts to “the most sweeping reevaluation of the military in 30 years, with tough questions for all four armed services but especially the Marine Corps.�

Freedberg identified SASC chairman Senator John McCain as the motivating element behind the report, which is part of the draft 2019 National Defense Authorization Act. It emphasizes the initiative to reorient the U.S. military away from its nearly two-decade long focus on counterinsurgency and counterterrorism to prioritizing preparation for potential future Great Power conflict, as outlined in Mattis’s recently published National Defense Strategy. McCain sees this shift taking place far too slowly according to Freedberg, who hints that Mattis shares this concern.

While the SASC request addresses some technological issues, its real focus is on redefining the priorities, missions, and force structures of the armed forces (including special operations forces) in the context of the National Defense Strategy.

The changes it seeks are drastic. According to Freedberg, among the difficult questions it poses are:

  • Make the Marines a counterinsurgency force? [This would greatly help alleviate the U.S. Army’s current strategic conundrum]
  • Make the Army heavier, with fewer helicopters?
  • Refocus Special Operations against Russia and China?
  • Rely less on stealth aircraft and more on drones?

Each of these questions relates directly to trends associated with the multi-domain battle and operations concepts the U.S. armed services are currently jointly developing in response to threats posed by Russian, Chinese, and Iranian military advances.

It is clear that the SASC believes that difficult choices with far-reaching consequences are needed to adequately prepare to meet these challenges. The armed services have been historically resistant to changes involving trade-offs, however, especially ones that touch on service budgets and roles and missions. It seems likely that more than a report will be needed to push through changes deemed necessary by the Senate Armed Services Committee chairman and the Secretary of Defense.

Read more of Freedberg’s article here.

The draft 2019 National Defense Authorization Act can be found here, and the SASC questions can be found in Section 1041 beginning on page 478.

Measuring The Effects Of Combat In Cities, Phase I

Measuring The Effects Of Combat In Cities, Phase I

“Catalina Kid,” a M4 medium tank of Company C, 745th Tank Battalion, U.S. Army, drives through the entrance of the Aachen-Rothe Erde railroad station during the fighting around the city viaduct on Oct. 20, 1944. [Courtesy of First Division Museum/Daily Herald]

In 2002, TDI submitted a report to the U.S. Army Center for Army Analysis (CAA) on the first phase of a study examining the effects of combat in cities, or what was then called “military operations on urbanized terrain,� or MOUT. This first phase of a series of studies on urban warfare focused on the impact of urban terrain on division-level engagements and army-level operations, based on data drawn from TDI’s DuWar database suite.

This included engagements in France during 1944 including the Channel and Brittany port cities of Brest, Boulogne, Le Havre, Calais, and Cherbourg, as well as Paris, and the extended series of battles in and around Aachen in 1944. These were then compared to data on fighting in contrasting non-urban terrain in Western Europe in 1944-45.

The conclusions of Phase I of that study (pp. 85-86) were as follows:

The Effect of Urban Terrain on Outcome

The data appears to support a null hypothesis, that is, that the urban terrain had no significantly measurable influence on the outcome of battle.

The Effect of Urban Terrain on Casualties

Overall, any way the data is sectioned, the attacker casualties in the urban engagements are less than in the non-urban engagements and the casualty exchange ratio favors the attacker as well. Because of the selection of the data, there is some question whether these observations can be extended beyond this data, but it does not provide much support to the notion that urban combat is a more intense environment than non-urban combat.

The Effect of Urban Terrain on Advance Rates

It would appear that one of the primary effects of urban terrain is that it slows opposed advance rates. One can conclude that the average advance rate in urban combat should be one-half to one-third that of non-urban combat.

The Effect of Urban Terrain on Force Density

Overall, there is little evidence that combat operations in urban terrain result in a higher linear density of troops, although the data does seem to trend in that direction.

The Effect of Urban Terrain on Armor

Overall, it appears that armor losses in urban terrain are the same as, or lower than armor losses in non-urban terrain. And in some cases it appears that armor losses are significantly lower in urban than non-urban terrain.

The Effect of Urban Terrain on Force Ratios

Urban terrain did not significantly influence the force ratio required to achieve success or effectively conduct combat operations.

The Effect of Urban Terrain on Stress in Combat

Overall, it appears that urban terrain was no more stressful a combat environment during actual combat operations than was non-urban terrain.

The Effect of Urban Terrain on Logistics

Overall, the evidence appears to be that the expenditure of artillery ammunition in urban operations was not greater than that in non-urban operations. In the two cases where exact comparisons could be made, the average expenditure rates were about one-third to one-quarter the average expenditure rates expected for an attack posture in the European Theater of Operations as a whole.

The evidence regarding the expenditure of other types of ammunition is less conclusive, but again does not appear to be significantly greater than the expenditures in non-urban terrain. Expenditures of specialized ordnance may have been higher, but the total weight expended was a minor fraction of that for all of the ammunition expended.

There is no evidence that the expenditure of other consumable items (rations, water or POL) was significantly different in urban as opposed to non-urban combat.

The Effect of Urban Combat on Time Requirements

It was impossible to draw significant conclusions from the data set as a whole. However, in the five significant urban operations that were carefully studied, the maximum length of time required to secure the urban area was twelve days in the case of Aachen, followed by six days in the case of Brest. But the other operations all required little more than a day to complete (Cherbourg, Boulogne and Calais).

However, since it was found that advance rates in urban combat were significantly reduced, then it is obvious that these two effects (advance rates and time) are interrelated. It does appear that the primary impact of urban combat is to slow the tempo of operations.

This in turn leads to a hypothetical construct, where the reduced tempo of urban operations (reduced casualties, reduced opposed advance rates and increased time) compared to non-urban operations, results in two possible scenarios.

The first is if the urban area is bounded by non-urban terrain. In this case the urban area will tend to be enveloped during combat, since the pace of battle in the non-urban terrain is quicker. Thus, the urban battle becomes more a mopping-up operation, as it historically has usually been, rather than a full-fledged battle.

The alternate scenario is that created by an urban area that cannot be enveloped and must therefore be directly attacked. This may be caused by geography, as in a city on an island or peninsula, by operational requirements, as in the case of Cherbourg, Brest and the Channel Ports, or by political requirements, as in the case of Stalingrad, Suez City and Grozny.

Of course these last three cases are also those usually included as examples of combat in urban terrain that resulted in high casualty rates. However, all three of them had significant political requirements that influenced the nature, tempo and even the simple necessity of conducting the operation. And, in the case of Stalingrad and Suez City, significant geographical limitations effected the operations as well. These may well be better used to quantify the impact of political agendas on casualties, rather than to quantify the effects of urban terrain on casualties.

The effects of urban terrain at the operational level, and the effect of urban terrain on the tempo of operations, will be further addressed in Phase II of this study.

More on the QJM/TNDM Italian Battles

More on the QJM/TNDM Italian Battles

Troops of the U.S. 36th Infantry Division advance inland on Red Beach, Salerno, Italy, 1943. [ibiblio/U.S. Center for Military History]

[The article below is reprinted from December 1998 edition of The International TNDM Newsletter.]

More on the QJM/TNDM Italian Battles
by Richard C. Anderson, Jr.

In regard to Niklas Zetterling’s article and Christopher Lawrence’s response (Newsletter Volume 1, Number 6) [and Christopher Lawrence’s 2018 addendum] I would like to add a few observations of my own. Recently I have had occasion to revisit the Allied and German records for Italy in general and for the Battle of Salerno in particular. What I found is relevant in both an analytical and an historical sense.

The Salerno Order of Battle

The first and most evident observation that I was able to make of the Allied and German Order of Battle for the Salerno engagements was that it was incorrect. The following observations all relate to the table found on page 25 of Volume 1, Number 6.

The divisional totals are misleading. The U.S. had one infantry division (the 36th) and two-thirds of a second (the 45th, minus the 180th RCT [Regimental Combat Team] and one battalion of the 157th Infantry) available during the major stages of the battle (9-15 September 1943). The 82nd Airborne Division was represented solely by elements of two parachute infantry regiments that were dropped as emergency reinforcements on 13-14 September. The British 7th Armored Division did not begin to arrive until 15-16 September and was not fully closed in the beachhead until 18-19 September.

The German situation was more complicated. Only a single panzer division, the 16th, under the command of the LXXVI Panzer Corps was present on 9 September. On 10 September elements of the Hermann Goring Parachute Panzer Division, with elements of the 15th Panzergrenadier Division under tactical command, began arriving from the vicinity of Naples. Major elements of the Herman Goring Division (with its subordinated elements of the 15th Panzergrenadier Division) were in place and had relieved elements of the 16th Panzer Division opposing the British beaches by 11 September. At the same time the 29th Panzergrenandier Division began arriving from Calabria and took up positions opposite the U.S. 36th Divisions in and south of Altavilla, again relieving elements of the 16th Panzer Division. By 11-12 September the German forces in the northern sector of the beachhead were under the command of the XIV Panzer Corps (Herman Goring Division (-), elements of the 15th Panzergrenadier Division and elements of the 3rd Panzergrenadier Division), while the LXXVI Panzer Corps commanded the 16th Panzer Division, 29th Panzergrenadier Division, and elements of the 26th Panzer Division. Unfortunately for the Germans the 16th Panzer Division’s zone was split by the boundary between the XIV and LXXVI Corps, both of whom appear to have had operational control over different elements of the division. Needless to say, the German command and control problems in this action were tremendous.[1]

The artillery totals given in the table are almost inexplicable. The numbers of SP [self-propelled] 75mm howitzers is a bit fuzzy, inasmuch as this was a non-standardized weapon on a half-track chassis. It was allocated to the infantry regimental cannon company (6 tubes) and was also issued to tank and tank destroyer battalions as a stopgap until purpose-designed systems could be brought into production. The 105mm SP was also present on a half-track chassis in the regimental cannon company (2 tubes) and on a full-track chassis in the armored field artillery battalion (18 tubes). The towed 105mm artillery was present in the five field artillery battalions present of the 36th and 45th divisions and in a single non-divisional battalion assigned to the VI Corps. The 155mm howitzers were only present in the two divisional �eld artillery battalions, the general support artillery assigned to the VI Corps, the 36th Field Artillery Regiment, did not arrive until 16 September. No 155mm gun battalions landed in Italy until October 1943. The U.S. artillery figures should approximately be as follows:

75mm Howitzer (SP)

2 per infantry battalion

28

6 per tank battalion

12

Total

40
105mm Howitzer (SP)

2 per infantry regiment

10

1 armored FA battalion[2]

18

5 divisional FA battalions

60

1 non-divisional FA battalion

12

Total

100
155mm Howitzer

2 divisional FA battalions

24
3″ Tank Destroyer

3 battalions

108

Thus, the U.S. artillery strength is approximately 272 versus 525 as given in the chart.

The British artillery figures are also suspect. Each of the British divisions present, the 46th and 56th, had three regiments (battalions in U.S. parlance) of 25-pounder gun-howitzers for a total of 72 per division. There is no evidence of the presence of the British 3-inch howitzer, except possibly on a tank chassis in the support tank role attached to the tank troop headquarters of the armor regiment (battalion) attached to the X Corps (possibly 8 tubes). The X Corps had a single medium regiment (battalion) attached with either 4.5 inch guns or 5.5 inch gun-howitzers or a mixture of the two (16 tubes). The British did not have any 7.2 inch howitzers or 155mm guns at Salerno. I do not know where the �gure for British 75mm howitzers is from, although it is possible that some may have been present with the corps armored car regiment.

Thus the British artillery strength is approximately 168 versus 321 as given in the chart.

The German artillery types are highly suspect. As Niklas Zetterling deduced, there was no German corps or army artillery present at Salemo. Neither the XIV or LXXVI Corps had Heeres (army) artillery attached. The two battalions of the 7lst Nebelwerfer regiment and one battery of 170mm guns (previously attached to the 15th Panzergrenadier Division) were all out of action, refurbishing and replenishing equipment in the vicinity of Naples. However, U.S. intelligence sources located 42 Italian coastal gun positions, including three 149mm (not 132mm) railway guns defending the beaches. These positions were taken over by German personnel on the night before the invasion. That they �red at all in the circumstances is a comment on the professionalism of the German Army. The remaining German artillery available was with the divisional elements that arrived to defend against the invasion forces. The following artillery strengths are known for the German forces at Salerno:

16th Panzer Division (as of 3 September):

14 75mm infantry support howitzers
11 150mm SP infantry support howitzers
10 105mm howitzers
8 105mm SP howitzers
4 105mm guns
8 150mm howitzers
5 150mm SP howitzers
5 88mm AA guns

26th Panzer Division (as of 12 September):

15 75mm infantry support howitzers
12 150mm infantry support howitzers
6 105mm SP howitzers
12 105mm howitzers
10 150mm SP howitzers
4 150mm howitzers

Herman Goring Parachute Panzer Division (as of 13 September):

6-8 75mm infantry support howitzers
8 150mm infantry support howitzers
24 105mm howitzers
12 105mm SP howitzers
4 105mm guns
8 150mrn howitzers
6 150mm SP howitzers
6 150mm multiple rocket launchers
12 88mm AA guns

29th Panzergrenadier Division

106 artillery pieces (types unknown)

15th Panzergrenadier Division (elements):

10-12 105mm howitzers

3d Panzergrenadier Division

6 150mm infantry support howitzers

Non-divisional:

501st Army Flak Battalion (probably 20mm and 37mm AA only)
I/49th Flak Battalion (probably 8 88mm AA guns)

Thus, German artillery strength is about 342 tubes versus 394 as given in the chart.[3]

Armor strengths are equally suspect for both the Allied and German forces. It should be noted however, that the original QJM database considered wheeled armored cars to be the equivalent of a light tank.

Only two U.S. armor battalions were assigned to the initial invasion force, with a total of 108 medium and 34 light tanks. The British X Corps had a single armor regiment (battalion) assigned with approximately 67 medium and 10 light tanks. Thus, the Allies had some 175 medium tanks versus 488 as given in the chart and 44 light tanks versus 236 (including an unknown number of armored cars) as given in the chart.

German armor strength was as follows (operational/in repair as of the date given):

16th Panzer Division (8 September):

7/0 Panzer III flamethrower tanks
12/0 Panzer IV short
86/6 Panzer IV long
37/3 assault guns

29th Panzergrenadier Division (1 September):

32/5 assault guns
17/4 SP antitank
3/0 Panzer III

26th Panzer Division (5 September):

11/? assault guns
10/? Panzer III

Herman Goering Parachute Panzer Division (7 September):

5/? Panzer IV short
11/? Panzer IV long
5/? Panzer III long
1/? Panzer III 75mm
21/? assault guns
3/? SP antitank

15th Panzergrenadier Division (8 September):

6/? Panzer IV long
18/? assault guns

Total 285/18 medium tanks, SP anti-tank, and assault guns. This number actually agrees very well with the 290 medium tanks given in the chart. I have not looked closely at the number of German armored cars but suspect that it is fairly close to that given in the charts.

In general it appears that the original QJM Database got the numbers of major items of equipment right for the Germans, even if it flubbed on the details. On the other hand, the numbers and details are highly suspect for the Allied major items of equipment. Just as a first order “guestimate� I would say that this probably reduces the German CEV to some extent; however, missing from the formula is the Allied naval gun�re support which, although negligible in impact in the initial stages of the battle, had a strong influence on the later stages of the battle.

Hopefully, with a little more research and time, we will be able to go back and revalidate these engagements. In the meantime I hope that this has clarified some of the questions raised about the Italian QJM Database.

NOTES

[1] Exacerbating the German command and control problems was the fact that the Tenth Army, which was in overall command of the XIV Panzer Corps and LXXVI Panzer Corps, had only been in existence for about six weeks. The army’s signal regiment was only partly organized and its quartermaster services were almost nonexistent.

[2] Arrived 13 September, 1 battery in action 13-15 September.

[3] However, the number given for the 29th Panzergrenadier Division appears to be suspiciously high and is not well defined. Hopefully further research may clarify the status of this division.

Dupuy’s Verities: The Power Of Defense

Dupuy’s Verities: The Power Of Defense

Leonidas at Thermopylae, by Jacques-Louis David, 1814. [Wikimedia]

The second of Trevor Dupuy’s Timeless Verities of Combat is:

Defensive strength is greater than offensive strength.

From Understanding War (1987):

[Prussian military theorist, Carl von] Clausewitz expressed this: “Defense is the stronger form of combat.� It is possible to demonstrate by the qualitative comparison of many battles that Clausewitz is right and that posture has a multiplicative effect on the combat power of a military force that takes advantage of terrain and fortifications, whether hasty and rudimentary, or intricate and carefully prepared. There are many well-known examples of the need of an attacker for a preponderance of strength in order to carry the day against a well-placed and fortified defender. One has only to recall Thermopylae, the Alamo, Fredericksburg, Petersburg, and El Alamein to realize the advantage enjoyed by a defender with smaller forces, well placed, and well protected. [p. 2]

The advantages of fighting on the defensive and the benefits of cover and concealment in certain types of terrain have long been basic tenets in military thinking. Dupuy, however, considered defensive combat posture and defensive value of terrain not just to be additive, but combat power multipliers, or circumstantial variables of combat that when skillfully applied and exploited, the effects of which could increase the overall fighting capability of a military force.

The statement [that the defensive is the stronger form of combat] implies a comparison of relative strength. It is essentially scalar and thus ultimately quantitative. Clausewitz did not attempt to define the scale of his comparison. However, by following his conceptual approach it is possible to establish quantities for this comparison. Depending upon the extent to which the defender has had the time and capability to prepare for defensive combat, and depending also upon such considerations as the nature of the terrain which he is able to utilize for defense, my research tells me that the comparative strength of defense to offense can range from a factor with a minimum value of about 1.3 to maximum value of more than 3.0. [p. 26]

The values Dupuy established for posture and terrain based on historical combat experience were as follows:

For example, Dupuy calculated that mounting even a hasty defense in rolling, gentle terrain with some vegetation could increase a force’s combat power by more than 50%. This is a powerful effect, achievable without the addition of any extra combat capability.

It should be noted that these values are both descriptive, in terms of defining Dupuy’s theoretical conception of the circumstantial variables of combat, as well as factors specifically calculated for use in his combat models. Some of these factors have found their way into models and simulations produced by others and some U.S. military doctrinal publications, usually without attribution and shorn of explanatory context. (A good exploration of the relationship between the values Dupuy established for the circumstantial variables of combat and his combat models, and the pitfalls of applying them out of context can be found here.)

While the impact of terrain on combat is certainly an integral part of current U.S. Army doctrinal thinking at all levels, and is constantly factored into combat planning and assessment, it does not explicitly acknowledge the classic Clausewitzian notion of a power disparity between the offense and defense. Nor are the effects of posture or terrain thought of as combat multipliers.

However, the Army does implicitly recognize the advantage of the defensive through its stubbornly persistent adherence to the so-called 3-1 rule of combat. Its version of this (which the U.S. Marine Corps also uses) is described in doctrinal publications as “historical minimum planning ratios,� which proscribe that a 3-1 advantage in numerical force ratio is necessary for an attacker to defeat a defender in a prepared or fortified position. Overcoming a defender in a hasty defense posture requires a 2.5-1 force ratio advantage. The force ratio advantages the Army considers necessary for decisive operations are even higher. While the 3-1 rule is a deeply problematic construct, the fact that is the only quantitative planning factor included in current doctrine reveals a healthy respect for the inherent power of the defensive.

Details Of U.S. Engagement With Russian Mercenaries In Syria Remain Murky

Details Of U.S. Engagement With Russian Mercenaries In Syria Remain Murky

UNDISCLOSED LOCATION, SYRIA (May 15, 2017)— U.S. Marines fortify a machine gun pit around their M777-A2 Howitzer in Syria, May 15, 2017. The unit has been conducting 24-hour all-weather fire support for Coalition’s local partners, the Syrian Democratic Forces, as part of Combined Joint Task Force-Operation Inherent Resolve. CJTF-OIR is the global coalition to defeat ISIS in Iraq and Syria. (U.S. Marine Corps photo by Sgt. Matthew Callahan)

Last week, the New York Times published an article by Thomas Gibbons-Neff that provided a detailed account of the fighting between U.S-advised Kurdish and Syrian militia forces and Russian mercenaries and Syrian and Arab fighters near the city of Deir Ezzor in eastern Syria on 7 February 2018. Gibbons-Neff stated the account was based on newly obtained documents and interviews with U.S. military personnel.

While Gibbons-Neff’s reporting fills in some details about the action, it differs in some respects to previous reporting, particularly a detailed account by Christoph Reuter, based on interviews from participants and witnesses in Syria, published previously in Spiegel Online.

  • According to Gibbons-Neff, the U.S. observed a buildup of combat forces supporting the regime of Syrian President Bashar al Assad in Deir Ezzor, south of the Euphrates River, which separated them from U.S.-backed Kurdish and Free Syrian militia forces and U.S. Special Operations Forces (SOF) and U.S. Marine Corps elements providing advice and assistance north of the river.
  • The pro-regime forces included “some Syrian government soldiers and militias, but American military and intelligence officials have said a majority were private Russian paramilitary mercenaries — and most likely a part of the Wagner Group, a company often used by the Kremlin to carry out objectives that officials do not want to be connected to the Russian government.â€�
  • After obtaining assurances from the Russian military chain-of-command in Syria that the forces were not theirs, Secretary of Defense James Mattis ordered “for the force, then, to be annihilated.â€�
  • Gibbons-Neff’s account focuses on the fighting that took place on the night of 7-8 February in the vicinity of a U.S. combat outpost located near a Conoco gas plant north of the Euphrates. While the article mentions the presence of allied Kurdish and Syrian militia fighters, it implies that the target of the pro-regime force was the U.S. outpost. It does not specify exactly where the pro-regime forces concentrated or the direction they advanced.
  • This is in contrast to Reuter’s Spiegel Online account, which reported a more complex operation. This included an initial probe across a bridge northwest of the Conoco plant on the morning of 7 February by pro-regime forces that included no Russians, which was repelled by warning shots from American forces.
  • After dark that evening, this pro-regime force attempted to cross the Euphrates again across a bridge to the southeast of the Conoco plant at the same time another pro-regime force advanced along the north bank of the Euphrates toward the U.S./Kurdish/Syrian forces from the town of Tabiya, southeast of the Conoco plant. According to Reuter, U.S. forces engaged both of these pro-regime advances north of the Euphrates.
  • While the Spiegel Online article advanced the claim that Russian mercenary forces were not leading the pro-regime attacks and that the casualties they suffered were due to U.S. collateral fire, Gibbons-Neff’s account makes the case that the Russians comprised at least a substantial part of at least one of the forces advancing on the U.S./Kurdish/Syrian bases and encampments in Deir Ezzor.
  • Based on documents it obtained, the Times asserts that 200-300 “pro-regimeâ€� personnel were killed out of an overall force of 500. Gibbons-Neff did not attempt to parse out the Russian share of these, but did mention that accounts in Russian media have risen from four dead as initially reported, to later claims of “perhaps dozensâ€� of killed and wounded. U.S. government sources continue to assert that most of the casualties were Russian.
  • It is this figure of 200-300 killed that I have both found problematic in the past. A total of 200-300 killed and wounded overall seems far more likely, with approximately 100 dead and 100-200 wounded out of the much larger overall force of Russian mercenaries, Syrian government troops, and tribal militia fighters involved in the fighting.

Motivation for the Operation Remains Unclear

While the details of the engagement remain ambiguous, the identity of those responsible for directing the attacks and the motivations for doing so are hazy as well. In late February, CNN and the Washington Post reported that U.S. intelligence had detected communications between Yevgeny Prigozhin—a Russian businessman with reported ties to President Vladimir Putin, the Ministry of Defense, and Russian mercenaries—and Russian and Syrian officials in the weeks leading up to the attack. One such intercept alleges that Prigozhin informed a Syrian official in January that he had secured permission from an unidentified Russian minister to move forward with a “fast and strong� initiative in Syria in early February.

Prigozhin was one of 13 individuals and three companies indicted by special counsel Robert Mueller on 16 February 2018 for funding and guiding a Russian government effort to interfere with the 2016 U.S. presidential election.

If the Deir Ezzor operation was indeed a clandestine operation sanctioned by the Russian government, the motivation remains mysterious. Gibbons-Neff’s account implies that the operation was a direct assault on a U.S. military position by a heavily-armed and equipped combat force, an action that all involved surely understood beforehand would provoke a U.S. military reaction. Even if the attack was instead aimed at taking the Conoco gas plant or forcing the Kurdish and Free Syrian forces out of Deir Ezzor, the attackers surely must have known the presence of U.S. military forces would elicit the same response.

Rueter’s account of a more complex operations suggests that the attack was a probe to test the U.S. response to armed action aimed at the U.S.’s Kurdish and Free Syrian proxy forces. If so, it was done very clumsily. The build-up of pro-regime forces telegraphed the effort in advance and the force itself seems to have been tailored for combat rather than reconnaissance. The fact that the U.S. government inquired with the Russian military leadership in Syria in advance about the provenance of the force build-up should have been a warning that any attempt at surprise had been compromised.

Whether the operation was simply intended to obtain a tactical advantage or to probe the resolution of U.S. involvement in Syria, the outcome bears all the hallmarks of a major miscalculation. Russian “hybrid warfare� tactics sustained a decisive reverse, while the effectiveness of U.S. military capabilities received a decided boost. Russian and U.S. forces and their proxies continue to spar using information operations, particularly electronic warfare, but they have not directly engaged each other since. The impact of this may be short-lived however, depending on whether or not U.S. President Donald J. Trump carries through with his intention announced in early April to withdraw U.S. forces from eastern Syria.

CEV Calculations in Italy, 1943

CEV Calculations in Italy, 1943

Tip of the Avalanche by Keith Rocco. Soldiers from the U.S. 36th Infantry Division landing at Salerno, Italy, September 1943.

[The article below is reprinted from June 1997 edition of The International TNDM Newsletter. Chris Lawrence’s response from the August 1997 edition of The International TNDM Newsletter will be posted on Friday.]

CEV Calculations in Italy, 1943
by Niklas Zetterling

Perhaps one of the most debated results of the TNDM (and its predecessors) is the conclusion that the German ground forces on average enjoyed a measurable qualitative superiority over its US and British opponents. This was largely the result of calculations on situations in Italy in 1943-44, even though further engagements have been added since the results were �rst presented. The calculated German superiority over the Red Army, despite the much smaller number of engagements, has not aroused as much opposition. Similarly, the calculated Israeli effectiveness superiority over its enemies seems to have surprised few.

However, there are objections to the calculations on the engagements in Italy 1943. These concern primarily the database, but there are also some questions to be raised against the way some of the calculations have been made, which may possibly have consequences for the TNDM.

Here it is suggested that the German CEV [combat effectiveness value] superiority was higher than originally calculated. There are a number of flaws in the original calculations, each of which will be discussed separately below. With the exception of one issue, all of them, if corrected, tend to give a higher German CEV.

The Database on Italy 1943-44

According to the database the German divisions had considerable �re support from GHQ artillery units. This is the only possible conclusion from the fact that several pieces of the types 15cm gun, 17cm gun, 21cm gun, and 15cm and 21cm Nebelwerfer are included in the data for individual engagements. These types of guns were almost exclusively con�ned to GHQ units. An example from the database are the three engagements Port of Salerno, Amphitheater, and Sele-Calore Corridor. These take place simultaneously (9-11 September 1943) with the German 16th Pz Div on the Axis side in all of them (no other division is included in the battles). Judging from the manpower �gures, it seems to have been assumed that the division participated with one quarter of its strength in each of the two former battles and half its strength in the latter. According to the database, the number of guns were:

15cm gun 28
17cm gun 12
21cm gun 12
15cm NbW 27
21cm NbW 21

This would indicate that the 16th Pz Div was supported by the equivalent of more than �ve non-divisional artillery battalions. For the German army this is a suspiciously high number, usually there were rather something like one GHQ artillery battalion for each division, or even less. Research in the German Military Archives con�rmed that the number of GHQ artillery units was far less than indicated in the HERO database. Among the useful documents found were a map showing the dispositions of 10th Army artillery units. This showed clearly that there was only one non-divisional artillery unit south of Rome at the time of the Salerno landings, the III/71 Nebelwerfer Battalion. Also the 557th Artillery Battalion (17cm gun) was present, it was included in the artillery regiment (33rd Artillery Regiment) of 15th Panzergrenadier Division during the second half of 1943. Thus the number of German artillery pieces in these engagements is exaggerated to an extent that cannot be considered insigni�cant. Since OLI values for artillery usually constitute a signi�cant share of the total OLI of a force in the TNDM, errors in artillery strength cannot be dismissed easily.

While the example above is but one, further archival research has shown that the same kind of error occurs in all the engagements in September and October 1943. It has not been possible to check the engagements later during 1943, but a pattern can be recognized. The ratio between the numbers of various types of GHQ artillery pieces does not change much from battle to battle. It seems that when the database was developed, the researchers worked with the assumption that the German corps and army organizations had organic artillery, and this assumption may have been used as a “rule of thumb.� This is wrong, however; only artillery staffs, command and control units were included in the corps and army organizations, not �ring units. Consequently we have a systematic error, which cannot be corrected without changing the contents of the database. It is worth emphasizing that we are discussing an exaggeration of German artillery strength of about 100%, which certainly is significant. Comparing the available archival records with the database also reveals errors in numbers of tanks and antitank guns, but these are much smaller than the errors in artillery strength. Again these errors do always inflate the German strength in those engagements l have been able to check against archival records. These errors tend to inflate German numerical strength, which of course affects CEV calculations. But there are further objections to the CEV calculations.

The Result Formula

The “result formula” weighs together three factors: casualties inflicted, distance advanced, and mission accomplishment. It seems that the ï¬�rst two do not raise many objections, even though the relative weight of them may always be subject to argumentation.

The third factor, mission accomplishment, is more dubious however. At �rst glance it may seem to be natural to include such a factor. Alter all, a combat unit is supposed to accomplish the missions given to it. However, whether a unit accomplishes its mission or not depends both on its own qualities as well as the realism of the mission assigned. Thus the mission accomplishment factor may reflect the qualities of the combat unit as well as the higher HQs and the general strategic situation. As an example, the Rapido crossing by the U.S. 36th Infantry Division can serve. The division did not accomplish its mission, but whether the mission was realistic, given the circumstances, is dubious. Similarly many German units did probably, in many situations, receive unrealistic missions, particularly during the last two years of the war (when most of the engagements in the database were fought). A more extreme example of situations in which unrealistic missions were given is the battle in Belorussia, June-July 1944, where German units were regularly given impossible missions. Possibly it is a general trend that the side which is �ghting at a strategic disadvantage is more prone to give its combat units unrealistic missions.

On the other hand it is quite clear that the mission assigned may well affect both the casualty rates and advance rates. If, for example, the defender has a withdrawal mission, advance may become higher than if the mission was to defend resolutely. This must however not necessarily be handled by including a missions factor in a result formula.

I have made some tentative runs with the TNDM, testing with various CEV values to see which value produced an outcome in terms of casualties and ground gained as near as possible to the historical result. The results of these runs are very preliminary, but the tendency is that higher German CEVs produce more historical outcomes, particularly concerning combat.

Supply Situation

According to scattered information available in published literature, the U.S. artillery �red more shells per day per gun than did German artillery. In Normandy, US 155mm M1 howitzers �red 28.4 rounds per day during July, while August showed slightly lower consumption, 18 rounds per day. For the 105mm M2 howitzer the corresponding �gures were 40.8 and 27.4. This can be compared to a German OKH study which, based on the experiences in Russia 1941-43, suggested that consumption of 105mm howitzer ammunition was about 13-22 rounds per gun per day, depending on the strength of the opposition encountered. For the 150mm howitzer the �gures were 12-15.

While these �gures should not be taken too seriously, as they are not from primary sources and they do also reflect the conditions in different theaters, they do at least indicate that it cannot be taken for granted that ammunition expenditure is proportional to the number of gun barrels. In fact there also exist further indications that Allied ammunition expenditure was greater than the German. Several German reports from Normandy indicate that they were astonished by the Allied ammunition expenditure.

It is unlikely that an increase in artillery ammunition expenditure will result in a proportional increase combat power. Rather it is more likely that there is some kind of diminished return with increased expenditure.

General Problems with Non-Divisional Units

A division usually (but not necessarily) includes various support services, such as maintenance, supply, and medical services. Non-divisional combat units have to a greater extent to rely on corps and army for such support. This makes it complicated to include such units, since when entering, for example, the manpower strength and truck strength in the TNDM, it is difficult to assess their contribution to the overall numbers.

Furthermore, the amount of such forces is not equal on the German and Allied sides. In general the Allied divisional slice was far greater than the German. In Normandy the US forces on 25 July 1944 had 812,000 men on the Continent, while the number of divisions was 18 (including the 5th Armored, which was in the process of landing on the 25th). This gives a divisional slice of 45,000 men. By comparison the German 7th Army mustered 16 divisions and 231,000 men on 1 June 1944, giving a slice of 14,437 men per division. The main explanation for the difference is the non-divisional combat units and the logistical organization to support them. In general, non-divisional combat units are composed of powerful, but supply-consuming, types like armor, artillery, antitank and antiaircraft. Thus their contribution to combat power and strain on the logistical apparatus is considerable. However I do not believe that the supporting units’ manpower and vehicles have been included in TNDM calculations.

There are however further problems with non-divisional units. While the whereabouts of tank and tank destroyer units can usually be established with sufficient certainty, artillery can be much harder to pin down to a speci�c division engagement. This is of course a greater problem when the geographical extent of a battle is small.

Tooth-to-Tail Ratio

Above was discussed the lack of support units in non-divisional combat units. One effect of this is to create a force with more OLI per man. This is the result of the unit‘s “tail” belonging to some other part of the military organization.

In the TNDM there is a mobility formula, which tends to favor units with many weapons and vehicles compared to the number of men. This became apparent when I was performing a great number of TNDM runs on engagements between Swedish brigades and Soviet regiments. The Soviet regiments usually contained rather few men, but still had many AFVs, artillery tubes, AT weapons, etc. The Mobility Formula in TNDM favors such units. However, I do not think this reflects any phenomenon in the real world. The Soviet penchant for lean combat units, with supply, maintenance, and other services provided by higher echelons, is not a more effective solution in general, but perhaps better suited to the particular constraints they were experiencing when forming units, training men, etc. In effect these services were existing in the Soviet army too, but formally not with the combat units.

This problem is to some extent reminiscent to how density is calculated (a problem discussed by Chris Lawrence in a recent issue of the Newsletter). It is comparatively easy to de�ne the frontal limit of the deployment area of force, and it is relatively easy to de�ne the lateral limits too. It is, however, much more difficult to say where the rear limit of a force is located.

When entering forces in the TNDM a rear limit is, perhaps unintentionally, drawn. But if the combat unit includes support units, the rear limit is pushed farther back compared to a force whose combat units are well separated from support units.

To what extent this affects the CEV calculations is unclear. Using the original database values, the German forces are perhaps given too high combat strength when the great number of GHQ artillery units is included. On the other hand, if the GHQ artillery units are not included, the opposite may be true.

The Effects of Defensive Posture

The posture factors are difficult to analyze, since they alone do not portray the advantages of defensive position. Such effects are also included in terrain factors.

It seems that the numerical values for these factors were assigned on the basis of professional judgement. However, when the QJM was developed, it seems that the developers did not assume the German CEV superiority. Rather, the German CEV superiority seems to have been discovered later. It is possible that the professional judgement was about as wrong on the issue of posture effects as they were on CEV. Since the British and American forces were predominantly on the offensive, while the Germans mainly defended themselves, a German CEV superiority may, at least partly, be hidden in two high effects for defensive posture.

When using corrected input data on the 20 situations in Italy September-October 1943, there is a tendency that the German CEV is higher when they attack. Such a tendency is also discernible in the engagements presented in Hitler’s Last Gamble. Appendix H, even though the number of engagements in the latter case is very small.

As it stands now this is not really more than a hypothesis, since it will take an analysis of a greater number of engagements to con�rm it. However, if such an analysis is done, it must be done using several sets of data. German and Allied attacks must be analyzed separately, and preferably the data would be separated further into sets for each relevant terrain type. Since the effects of the defensive posture are intertwined with terrain factors, it is very much possible that the factors may be correct for certain terrain types, while they are wrong for others. It may also be that the factors can be different for various opponents (due to differences in training, doctrine, etc.). It is also possible that the factors are different if the forces are predominantly composed of armor units or mainly of infantry.

One further problem with the effects of defensive position is that it is probably strongly affected by the density of forces. It is likely that the main effect of the density of forces is the inability to use effectively all the forces involved. Thus it may be that this factor will not influence the outcome except when the density is comparatively high. However, what can be regarded as “high� is probably much dependent on terrain, road net quality, and the cross-country mobility of the forces.

Conclusions

While the TNDM has been criticized here, it is also �tting to praise the model. The very fact that it can be criticized in this way is a testimony to its openness. In a sense a model is also a theory, and to use Popperian terminology, the TNDM is also very testable.

It should also be emphasized that the greatest errors are probably those in the database. As previously stated, I can only conclude safely that the data on the engagements in Italy in 1943 are wrong; later engagements have not yet been checked against archival documents. Overall the errors do not represent a dramatic change in the CEV values. Rather, the Germans seem to have (in Italy 1943) a superiority on the order of 1.4-1.5, compared to an original �gure of 1.2-1.3.

During September and October 1943, almost all the German divisions in southern Italy were mechanized or parachute divisions. This may have contributed to a higher German CEV. Thus it is not certain that the conclusions arrived at here are valid for German forces in general, even though this factor should not be exaggerated, since many of the German divisions in Italy were either newly raised (e.g., 26th Panzer Division) or rebuilt after the Stalingrad disaster (16th Panzer Division plus 3rd and 29th Panzergrenadier Divisions) or the Tunisian debacle (15th Panzergrenadier Division).

The Third World War of 1985

The Third World War of 1985

Hackett

[This article was originally posted on 5 August 2016]

The seeming military resurgence of Vladimir Putin’s Russia has renewed concerns about the military balance between East and West in Europe. These concerns have evoked memories of the decades-long Cold War confrontation between NATO and the Warsaw Pact along the inner-German frontier. One of the most popular expressions of this conflict came in the form of a book titled The Third World War: August 1985, by British General Sir John Hackett. The book, a hypothetical account of a war between the Soviet Union, the United States, and assorted allies set in the near future, became an international best-seller.

Jeffrey H Michaels, a Senior Lecturer in Defence Studies at the British the Joint Services Command and Staff College, has published a detailed look at how Hackett and several senior NATO and diplomatic colleagues constructed the scenario portrayed in the book. Scenario construction is an important aspect of institutional war gaming. A war game will only be as useful if the assumptions that underpin it are valid. As Michaels points out,

Regrettably, far too many scenarios and models, whether developed by military organizations, political scientists, or fiction writers, tend to focus their attention on the battlefield and the clash of armies, navies, air forces, and especially their weapons systems.  By contrast, the broader context of the war – the reasons why hostilities erupted, the political and military objectives, the limits placed on military action, and so on – are given much less serious attention, often because they are viewed by the script-writers as a distraction from the main activity that occurs on the battlefield.

Modelers and war gamers always need to keep in mind the fundamental importance of context in designing their simulations.

It is quite easy to project how one weapon system might fare against another, but taken out of a broader strategic context, such a projection is practically meaningless (apart from its marketing value), or worse, misleading.  In this sense, even if less entertaining or exciting, the degree of realism of the political aspects of the scenario, particularly policymakers’ rationality and cost-benefit calculus, and the key decisions that are taken about going to war, the objectives being sought, the limits placed on military action, and the willingness to incur the risks of escalation, should receive more critical attention than the purely battlefield dimensions of the future conflict.

These are crucially important points to consider when deciding how to asses the outcomes of hypothetical scenarios.

Dupuy’s Verities: Offensive Action

Dupuy’s Verities: Offensive Action

Sheridan’s final charge at Winchester by Thune de Thulstrup (ca. 1886) [Library of Congress]

The first of Trevor Dupuy’s Timeless Verities of Combat is:

Offensive action is essential to positive combat results.

As he explained in Understanding War (1987):

This is like saying, “A team can’t score in football unless it has the ball.� Although subsequent verities stress the strength, value, and importance of defense, this should not obscure the essentiality of offensive action to ultimate combat success. Even in instances where a defensive strategy might conceivably assure a favorable war outcome—as was the case of the British against Napoleon, and as the Confederacy attempted in the American Civil War—selective employment of offensive tactics and operations is required if the strategic defender is to have any chance of final victory. [pp. 1-2]

The offensive has long been a staple element of the principles of war. From the 1954 edition of the U.S. Army Field Manual FM 100-5, Field Service Regulations, Operations:

71. Offensive

Only offensive action achieves decisive results. Offensive action permits the commander to exploit the initiative and impose his will on the enemy. The defensive may be forced on the commander, but it should be deliberately adopted only as a temporary expedient while awaiting an opportunity for offensive action or for the purpose of economizing forces on a front where a decision is not sought. Even on the defensive the commander seeks every opportunity to seize the initiative and achieve decisive results by offensive action. [Original emphasis]

Interestingly enough, the offensive no longer retains its primary place in current Army doctrinal thought. It is now placed on the same par as the defensive and stability operations. As the 2017 edition of the capstone FM 3-0 Operations now lays it out:

Unified land operations are simultaneous offensive, defensive, and stability or defense support of civil authorities’ tasks to seize, retain, and exploit the initiative to shape the operational environment, prevent conflict, consolidate gains, and win our Nation’s wars as part of unified action (ADRP 3-0)…

At the heart of the Army’s operational concept is decisive action. Decisive action is the continuous, simultaneous combinations of offensive, defensive, and stability or defense support of civil authorities tasks (ADRP 3-0). During large-scale combat operations, commanders describe the combinations of offensive, defensive, and stability tasks in the concept of operations. As a single, unifying idea, decisive action provides direction for an entire operation. [p. I-16; original emphasis]

It is perhaps too easy to read too much into this change in emphasis. On the very next page, FM 3-0 describes offensive “tasks� thusly:

Offensive tasks are conducted to defeat and destroy enemy forces and seize terrain, resources, and population centers. Offensive tasks impose the commander’s will on the enemy. The offense is the most direct and sure means of seizing and exploiting the initiative to gain physical and cognitive advantages over an enemy. In the offense, the decisive operation is a sudden, shattering action that capitalizes on speed, surprise, and shock effect to achieve the operation’s purpose. If that operation does not destroy or defeat the enemy, operations continue until enemy forces disintegrate or retreat so they no longer pose a threat. Executing offensive tasks compels an enemy to react, creating or revealing additional weaknesses that an attacking force can exploit. [p. I-17]

The change in emphasis reflects recent U.S. military experience where decisive action has not yielded much in the way of decisive outcomes, as is mentioned in to FM 3-0’s introduction. Joint force offensives in 2001 and 2003 “achieved rapid initial military success but no enduring political outcome, resulting in protracted counterinsurgency campaigns.� The Army now anticipates a future operating environment where joint forces can expect to “work together and with unified action partners to successfully prosecute operations short of conflict, prevail in large-scale combat operations, and consolidate gains to win enduring strategic outcomes� that are not necessarily predicated on offensive action alone. We may have to wait for the next edition of FM 3-0 to see if the Army has drawn valid conclusions from the recent past or not.

Scoring Weapons And Aggregation In Trevor Dupuy’s Combat Models

Scoring Weapons And Aggregation In Trevor Dupuy’s Combat Models

[The article below is reprinted from the October 1997 edition of The International TNDM Newsletter.]

Consistent Scoring of Weapons and Aggregation of Forces:
The Cornerstone of Dupuy’s Quantitative Analysis of Historical Land Battles
by
James G. Taylor, PhD,
Dept. of Operations Research, Naval Postgraduate School

Introduction

Col. Trevor N. Dupuy was an American original, especially as regards the quantitative study of warfare. As with many prophets, he was not entirely appreciated in his own land, particularly its Military Operations Research (OR) community. However, after becoming rather familiar with the details of his mathematical modeling of ground combat based on historical data, I became aware of the basic scienti�c soundness of his approach. Unfortunately, his documentation of methodology was not always accepted by others, many of whom appeared to confuse lack of mathematical sophistication in his documentation with lack of scienti�c validity of his basic methodology.

The purpose of this brief paper is to review the salient points of Dupuy’s methodology from a system’s perspective, i.e., to view his methodology as a system, functioning as an organic whole to capture the essence of past combat experience (with an eye towards extrapolation into the future). The advantage of this perspective is that it immediately leads one to the conclusion that if one wants to use some functional relationship derived from Dupuy’s work, then one should use his methodologies for scoring weapons, aggregating forces, and adjusting for operational circumstances; since this consistency is the only guarantee of being able to reproduce historical results and to project them into the future.

Implications (of this system’s perspective on Dupuy’s work) for current DOD models will be discussed. In particular, the Military OR community has developed quantitative methods for imputing values to weapon systems based on their attrition capability against opposing forces and force interactions.[1] One such approach is the so-called antipotential-potential method[2] used in TACWAR[3] to score weapons. However, one should not expect such scores to provide valid casualty estimates when combined with historically derived functional relationships such as the so-called ATLAS casualty-rate curves[4] used in TACWAR, because a different “yard-stick� (i.e. measuring system for estimating the relative combat potential of opposing forces) was used to develop such a curve.

Overview of Dupuy’s Approach

This section briefly outlines the salient features of Dupuy’s approach to the quantitative analysis and modeling of ground combat as embodied in his Tactical Numerical Deterministic Model (TNDM) and its predecessor the Quanti�ed Judgment Model (QJM). The interested reader can �nd details in Dupuy [1979] (see also Dupuy [1985][5], [1987], [1990]). Here we will view Dupuy’s methodology from a system approach, which seeks to discern its various components and their interactions and to view these components as an organic whole. Essentially Dupuy’s approach involves the development of functional relationships from historical combat data (see Fig. 1) and then using these functional relationships to model future combat (see Fig, 2).

At the heart of Dupuy’s method is the investigation of historical battles and comparing the relationship of inputs (as quanti�ed by relative combat power, denoted as Pa/Pd for that of the attacker relative to that of the defender in Fig. l)(e.g. see Dupuy [1979, pp. 59-64]) to outputs (as quanti�ed by extent of mission accomplishment, casualty effectiveness, and territorial effectiveness; see Fig. 2) (e.g. see Dupuy [1979, pp. 47-50]), The salient point is that within this scheme, the main input[6] (i.e. relative combat power) to a historical battle is a derived quantity. It is computed from formulas that involve three essential aspects: (1) the scoring of weapons (e.g, see Dupuy [1979, Chapter 2 and also Appendix A]), (2) aggregation methodology for a force (e.g. see Dupuy [1979, pp. 43-46 and 202-203]), and (3) situational-adjustment methodology for determining the relative combat power of opposing forces (e.g. see Dupuy [1979, pp. 46-47 and 203-204]). In the force-aggregation step the effects on weapons of Dupuy’s environmental variables and one operational variable (air superiority) are considered[7], while in the situation-adjustment step the effects on forces of his behavioral variables[8] (aggregated into a single factor called the relative combat effectiveness value (CEV)) and also the other operational variables are considered (Dupuy [1987, pp. 86-89])

Figure 1.

Moreover, any functional relationships developed by Dupuy depend (unless shown otherwise) on his computational system for derived quantities, namely OLls, force strengths, and relative combat power. Thus, Dupuy’s results depend in an essential manner on his overall computational system described immediately above. Consequently, any such functional relationship (e.g. casualty-rate curve) directly or indirectly derivative from Dupuy‘s work should still use his computational methodology for determination of independent-variable values.

Fig l also reveals another important aspect of Dupuy’s work, the development of reliable data on historical battles, Military judgment plays an essential role in this development of such historical data for a variety of reasons. Dupuy was essentially the only source of new secondary historical data developed from primary sources (see McQuie [1970] for further details). These primary sources are well known to be both incomplete and inconsistent, so that military judgment must be used to �ll in the many gaps and reconcile observed inconsistencies. Moreover, military judgment also generates the working hypotheses for model development (e.g. identi�cation of signi�cant variables).

At the heart of Dupuy’s quantitative investigation of historical battles and subsequent model development is his own weapons-scoring methodology, which slowly evolved out of study efforts by the Historical Evaluation Research Organization (HERO) and its successor organizations (cf. HERO [1967] and compare with Dupuy [1979]). Early HERO [1967, pp. 7-8] work revealed that what one would today call weapons scores developed by other organizations were so poorly documented that HERO had to create its own methodology for developing the relative lethality of weapons, which eventually evolved into Dupuy’s Operational Lethality Indices (OLIs). Dupuy realized that his method was arbitrary (as indeed is its counterpart, called the operational definition, in formal scientific work), but felt that this would be ameliorated if the weapons-scoring methodology be consistently applied to historical battles. Unfortunately, this point is not clearly stated in Dupuy’s formal writings, although it was clearly (and compellingly) made by him in numerous brie�ngs that this author heard over the years.

Figure 2.

In other words, from a system’s perspective, the functional relationships developed by Colonel Dupuy are part of his analysis system that includes this weapons-scoring methodology consistently applied (see Fig. l again). The derived functional relationships do not stand alone (unless further empirical analysis shows them to hold for any weapons-scoring methodology), but function in concert with computational procedures. Another essential part of this system is Dupuy‘s aggregation methodology, which combines numbers, environmental circumstances, and weapons scores to compute the strength (S) of a military force. A key innovation by Colonel Dupuy [1979, pp. 202- 203] was to use a nonlinear (more precisely, a piecewise-linear) model for certain elements of force strength. This innovation precluded the occurrence of military absurdities such as air �repower being fully substitutable for ground �repower, antitank weapons being fully effective when armor targets are lacking, etc‘ The �nal part of this computational system is Dupuy’s situational-adjustment methodology, which combines the effects of operational circumstances with force strengths to determine relative combat power, e.g. Pa/Pd.

To recapitulate, the determination of an Operational Lethality Index (OLI) for a weapon involves the combination of weapon lethality, quanti�ed in terms of a Theoretical Lethality Index (TLI) (e.g. see Dupuy [1987, p. 84]), and troop dispersion[9] (e.g. see Dupuy [1987, pp. 84- 85]). Weapons scores (i.e. the OLIs) are then combined with numbers (own side and enemy) and combat- environment factors to yield force strength. Six[10] different categories of weapons are aggregated, with nonlinear (i.e. piecewise-linear) models being used for the following three categories of weapons: antitank, air defense, and air �repower (i.e. c1ose—air support). Operational, e.g. mobility, posture, surprise, etc. (Dupuy [1987, p. 87]), and behavioral variables (quanti�ed as a relative combat effectiveness value (CEV)) are then applied to force strength to determine a side’s combat-power potential.

Requirement for Consistent Scoring of Weapons, Force Aggregation, and Situational Adjustment for Operational Circumstances

The salient point to be gleaned from Fig.1 and 2 is that the same (or at least consistent) weapons—scoring, aggregation, and situational—adjustment methodologies be used for both developing functional relationships and then playing them to model future combat. The corresponding computational methods function as a system (organic whole) for determining relative combat power, e.g. Pa/Pd. For the development of functional relationships from historical data, a force ratio (relative combat power of the two opposing sides, e.g. attacker’s combat power divided by that of the defender, Pa/Pd is computed (i.e. it is a derived quantity) as the independent variable, with observed combat outcome being the dependent variable. Thus, as discussed above, this force ratio depends on the methodologies for scoring weapons, aggregating force strengths, and adjusting a force’s combat power for the operational circumstances of the engagement. It is a priori not clear that different scoring, aggregation, and situational-adjustment methodologies will lead to similar derived values. If such different computational procedures were to be used, these derived values should be recomputed and the corresponding functional relationships rederived and replotted.

However, users of the Tactical Numerical Deterministic Model (TNDM) (or for that matter, its predecessor, the Quanti�ed Judgment Model (QJM)) need not worry about this point because it was apparently meticulously observed by Colonel Dupuy in all his work. However, portions of his work have found their way into a surprisingly large number of DOD models (usually not explicitly acknowledged), but the context and range of validity of historical results have been largely ignored by others. The need for recalibration of the historical data and corresponding functional relationships has not been considered in applying Dupuy’s results for some important current DOD models.

Implications for Current DOD Models

A number of important current DOD models (namely, TACWAR and JICM discussed below) make use of some of Dupuy’s historical results without recalibrating functional relationships such as loss rates and rates of advance as a function of some force ratio (e.g. Pa/Pd). As discussed above, it is not clear that such a procedure will capture the essence of past combat experience. Moreover, in calculating losses, Dupuy �rst determines personnel losses (expressed as a percent loss of personnel strength, i.e., number of combatants on a side) and then calculates equipment losses as a function of this casualty rate (e.g., see Dupuy [1971, pp. 219-223], also [1990, Chapters 5 through 7][11]). These latter functional relationships are apparently not observed in the models discussed below. In fact, only Dupuy (going back to Dupuy [1979][12] takes personnel losses to depend on a force ratio and other pertinent variables, with materiel losses being taken as derivative from this casualty rate.

For example, TACWAR determines personnel losses[13] by computing a force ratio and then consulting an appropriate casualty-rate curve (referred to as empirical data), much in the same fashion as ATLAS did[14]. However, such a force ratio is computed using a linear model with weapon values determined by the so-called antipotential-potential method[15]. Unfortunately, this procedure may not be consistent with how the empirical data (i.e. the casualty-rate curves) was developed. Further research is required to demonstrate that valid casualty estimates are obtained when different weapon scoring, aggregation, and situational-adjustment methodologies are used to develop casualty-rate curves from historical data and to use them to assess losses in aggregated combat models. Furthermore, TACWAR does not use Dupuy’s model for equipment losses (see above), although it does purport, as just noted above, to use “historical data” (e.g., see Kerlin et al. [1975, p. 22]) to compute personnel losses as a function (among other things) of a force ratio (given by a linear relationship), involving close air support values in a way never used by Dupuy. Although their force-ratio determination methodology does have logical and mathematical merit, it is not the way that the historical data was developed.

Moreover, RAND (Allen [1992]) has more recently developed what is called the situational force scoring (SFS) methodology for calculating force ratios in large-scale, aggregated-force combat situations to determine loss and movement rates. Here, SFS refers essentially to a force- aggregation and situation-adjustment methodology, which has many conceptual elements in common with Dupuy‘s methodology (except, most notably, extensive testing against historical data, especially documentation of such efforts). This SFS was originally developed for RSAS[16] and is today used in JICM[17]. It also apparently uses a weapon-scoring system developed at RAND[18]. It purports (no documentation given [citation of unpublished work]) to be consistent with historical data (including the ATLAS casualty-rate curves) (Allen [1992, p.41]), but again no consideration is given to recalibration of historical results for different weapon scoring, force-aggregation, and situational-adjustment methodologies. SFS emphasizes adjusting force strengths according to operational circumstances (the “situation�) of the engagement (including surprise), with many innovative ideas (but in some major ways has little connection with previous work of others[19]). The resulting model contains many more details than historical combat data would support. It also is methodology that differs in many essential ways from that used previously by any investigator. In particular, it is doubtful that it develops force ratios in a manner consistent with Dupuy’s work.

Final Comments

Use of (sophisticated) mathematics for modeling past historical combat (and extrapolating it into the future for planning purposes) is no reason for ignoring Dupuy’s work. One would think that the current Military OR community would try to understand Dupuy’s work before trying to improve and extend it. In particular, Colonel Dupuy’s various computational procedures (including constants) must be considered as an organic whole (i.e. a system) supporting the development of functional relationships. If one ignores this computational system and simply tries to use some isolated aspect, the result may be interesting and even logically sound, but it probably lacks any scienti�c validity.

REFERENCES

P. Allen, “Situational Force Scoring: Accounting for Combined Arms Effects in Aggregate Combat Models,� N-3423-NA, The RAND Corporation, Santa Monica, CA, 1992.

L. B. Anderson, “A Brie�ng on Anti-Potential Potential (The Eigen-value Method for Computing Weapon Values), WP-2, Project 23-31, Institute for Defense Analyses, Arlington, VA, March 1974.

B. W. Bennett, et al, “RSAS 4.6 Summary,� N-3534-NA, The RAND Corporation, Santa Monica, CA, 1992.

B. W. Bennett, A. M. Bullock, D. B. Fox, C. M. Jones, J. Schrader, R. Weissler, and B. A. Wilson, “JICM 1.0 Summary,� MR-383-NA, The RAND Corporation, Santa Monica, CA, 1994.

P. K. Davis and J. A. Winnefeld, “The RAND Strategic Assessment Center: An Overview and Interim Conclusions About Utility and Development Options,� R-2945-DNA, The RAND Corporation, Santa Monica, CA, March 1983.

T.N, Dupuy, Numbers. Predictions and War: Using History to Evaluate Combat Factors and Predict the Outcome of Battles, The Bobbs-Merrill Company, Indianapolis/New York, 1979,

T.N. Dupuy, Numbers Predictions and War, Revised Edition, HERO Books, Fairfax, VA 1985.

T.N. Dupuy, Understanding War: History and Theory of Combat, Paragon House Publishers, New York, 1987.

T.N. Dupuy, Attrition: Forecasting Battle Casualties and Equipment Losses in Modem War, HERO Books, Fairfax, VA, 1990.

General Research Corporation (GRC), “A Hierarchy of Combat Analysis Models,� McLean, VA, January 1973.

Historical Evaluation and Research Organization (HERO), “Average Casualty Rates for War Games, Based on Historical Data,� 3 Volumes in 1, Dunn Loring, VA, February 1967.

E. P. Kerlin and R. H. Cole, “ATLAS: A Tactical, Logistical, and Air Simulation: Documentation and User’s Guide,� RAC-TP-338, Research Analysis Corporation, McLean, VA, April 1969 (AD 850 355).

E.P. Kerlin, L.A. Schmidt, A.J. Rolfe, M.J. Hutzler, and D,L. Moody, “The IDA Tactical Warfare Model: A Theater-Level Model of Conventional, Nuclear, and Chemical Warfare, Volume II- Detailed Description� R-21 1, Institute for Defense Analyses, Arlington, VA, October 1975 (AD B009 692L).

R. McQuie, “Military History and Mathematical Analysis,” Military Review 50, No, 5, 8-17 (1970).

S.M. Robinson, “Shadow Prices for Measures of Effectiveness, I: Linear Model,� Operations Research 41, 518-535 (1993).

J.G. Taylor, Lanchester Models of Warfare. Vols, I & II. Operations Research Society of America, Alexandria, VA, 1983. (a)

J.G. Taylor, “A Lanchester-Type Aggregated-Force Model of Conventional Ground Combat,� Naval Research Logistics Quarterly 30, 237-260 (1983). (b)

NOTES

[1] For example, see Taylor [1983a, Section 7.18], which contains a number of examples. The basic references given there may be more accessible through Robinson [I993].

[2] This term was apparently coined by L.B. Anderson [I974] (see also Kerlin et al. [1975, Chapter I, Section D.3]).

[3] The Tactical Warfare (TACWAR) model is a theater-level, joint-warfare, computer-based combat model that is currently used for decision support by the Joint Staff and essentially all CINC staffs. It was originally developed by the Institute for Defense Analyses in the mid-1970s (see Kerlin et al. [1975]), originally referred to as TACNUC, which has been continually upgraded until (and including) the present day.

[4] For example, see Kerlin and Cole [1969], GRC [1973, Fig. 6-6], or Taylor [1983b, Fig. 5] (also Taylor [1983a, Section 7.13]).

[5] The only apparent difference between Dupuy [1979] and Dupuy [1985] is the addition of an appendix (Appendix C “Modi�ed Quanti�ed Judgment Analysis of the Bekaa Valley Battle�) to the end of the latter (pp. 241-251). Hence, the page content is apparently the same for these two books for pp. 1-239.

[6] Technically speaking, one also has the engagement type and possibly several other descriptors (denoted in Fig. 1 as reduced list of operational circumstances) as other inputs to a historical battle.

[7] In Dupuy [1979, e.g. pp. 43-46] only environmental variables are mentioned, although basically the same formulas underlie both Dupuy [1979] and Dupuy [1987]. For simplicity, Fig. 1 and 2 follow this usage and employ the term “environmental circumstances.”

[8] In Dupuy [1979, e.g. pp. 46-47] only operational variables are mentioned, although basically the same formulas underlie both Dupuy [1979] and Dupuy [1987]. For simplicity, Fig. 1 and 2 follow this usage and employ the term “operational circumstances.�

[9] Chris Lawrence has kindly brought to my attention that since the same value for troop dispersion from an historical period (e.g. see Dupuy [1987, p. 84]) is used for both the attacker and also the defender, troop dispersion does not actually affect the determination of relative combat power PM/Pd.

[10] Eight different weapon types are considered, with three being classi�ed as infantry weapons (e.g. see Dupuy [1979, pp, 43-44], [1981 pp. 85-86]).

[11] Chris Lawrence has kindly informed me that Dupuy‘s work on relating equipment losses to personnel losses goes back to the early 1970s and even earlier (e.g. see HERO [1966]). Moreover, Dupuy‘s [1992] book Future Wars gives some additional empirical evidence concerning the dependence of equipment losses on casualty rates.

[12] But actually going back much earlier as pointed out in the previous footnote.

[13] See Kerlin et al. [1975, Chapter I, Section D.l].

[14] See Footnote 4 above.

[15] See Kerlin et al. [1975, Chapter I, Section D.3]; see also Footnotes 1 and 2 above.

[16] The RAND Strategy Assessment System (RSAS) is a multi-theater aggregated combat model developed at RAND in the early l980s (for further details see Davis and Winnefeld [1983] and Bennett et al. [1992]). It evolved into the Joint Integrated Contingency Model (JICM), which is a post-Cold War redesign of the RSAS (starting in FY92).

[17] The Joint Integrated Contingency Model (JICM) is a game-structured computer-based combat model of major regional contingencies and higher-level conflicts, covering strategic mobility, regional conventional and nuclear warfare in multiple theaters, naval warfare, and strategic nuclear warfare (for further details, see Bennett et al. [1994]).

[18] RAND apparently replaced one weapon-scoring system by another (e.g. see Allen [1992, pp. 9, l5, and 87-89]) without making any other changes in their SFS System.

[19] For example, both Dupuy’s early HERO work (e.g. see Dupuy [1967]), reworks of these results by the Research Analysis Corporation (RAC) (e.g. see RAC [1973, Fig. 6-6]), and Dupuy’s later work (e.g. see Dupuy [1979]) considered daily fractional casualties for the attacker and also for the defender as basic casualty-outcome descriptors (see also Taylor [1983b]). However, RAND does not do this, but considers the defender’s loss rate and a casualty exchange ratio as being the basic casualty-production descriptors (Allen [1992, pp. 41-42]). The great value of using the former set of descriptors (i.e. attacker and defender fractional loss rates) is that not only is casualty assessment more straight forward (especially development of functional relationships from historical data) but also qualitative model behavior is readily deduced (see Taylor [1983b] for further details).

The Lanchester Equations and Historical Warfare

The Lanchester Equations and Historical Warfare

Allied force dispositions at the Battle of Anzio, on 1 February 1944. [U.S. Army/Wikipedia]

[The article below is reprinted from History, Numbers And War: A HERO Journal, Vol. 1, No. 1, Spring 1977, pp. 34-52]

The Lanchester Equations and Historical Warfare: An Analysis of Sixty World War II Land Engagements

By Janice B. Fain

Background and Objectives

The method by which combat losses are computed is one of the most critical parts of any combat model. The Lanchester equations, which state that a unit’s combat losses depend on the size of its opponent, are widely used for this purpose.

In addition to their use in complex dynamic simulations of warfare, the Lanchester equations have also sewed as simple mathematical models. In fact, during the last decade or so there has been an explosion of theoretical developments based on them. By now their variations and modifications are numerous, and “Lanchester theory� has become almost a separate branch of applied mathematics. However, compared with the effort devoted to theoretical developments, there has been relatively little empirical testing of the basic thesis that combat losses are related to force sizes.

One of the first empirical studies of the Lanchester equations was Engel’s classic work on the Iwo Jima campaign in which he found a reasonable �t between computed and actual U.S. casualties (Note 1). Later studies were somewhat less supportive (Notes 2 and 3), but an investigation of Korean war battles showed that, when the simulated combat units were constrained to follow the tactics of their historical counterparts, casualties during combat could be predicted to within 1 to 13 percent (Note 4).

Taken together, these various studies suggest that, while the Lanchester equations may be poor descriptors of large battles extending over periods during which the forces were not constantly in combat, they may be adequate for predicting losses while the forces are actually engaged in fighting. The purpose of the work reported here is to investigate 60 carefully selected World War II engagements. Since the durations of these battles were short (typically two to three days), it was expected that the Lanchester equations would show a closer fit than was found in studies of larger battles. In particular, one of the objectives was to repeat, in part, Willard’s work on battles of the historical past (Note 3).

The Data Base

Probably the most nearly complete and accurate collection of combat data is the data on World War II compiled by the Historical Evaluation and Research Organization (HERO). From their data HERO analysts selected, for quantitative analysis, the following 60 engagements from four major Italian campaigns:

Salerno, 9-18 Sep 1943, 9 engagements

Volturno, 12 Oct-8 Dec 1943, 20 engagements

Anzio, 22 Jan-29 Feb 1944, 11 engagements

Rome, 14 May-4 June 1944, 20 engagements

The complete data base is described in a HERO report (Note 5). The work described here is not the first analysis of these data. Statistical analyses of weapon effectiveness and the testing of a combat model (the Quantified Judgment Method, QJM) have been carried out (Note 6). The work discussed here examines these engagements from the viewpoint of the Lanchester equations to consider the question: “Are casualties during combat related to the numbers of men in the opposing forces?�

The variables chosen for this analysis are shown in Table 1. The “winnersâ€� of the engagements were specified by HERO on the basis of casualties suffered, distance advanced, and subjective estimates of the percentage of the commander’s objective achieved. Variable 12, the Combat Power Ratio, is based on the Operational Lethality Indices (OLI) of the units (Note 7).

The general characteristics of the engagements are briefly described. Of the 60, there were 19 attacks by British forces, 28 by U.S. forces, and 13 by German forces. The attacker was successful in 34 cases; the defender, in 23; and the outcomes of 3 were ambiguous. With respect to terrain, 19 engagements occurred in flat terrain; 24 in rolling, or intermediate, terrain; and 17 in rugged, or difficult, terrain. Clear weather prevailed in 40 cases; 13 engagements were fought in light or intermittent rain; and 7 in medium or heavy rain. There were 28 spring and summer engagements and 32 fall and winter engagements.

Comparison of World War II Engagements With Historical Battles

Since one purpose of this work is to repeat, in part, Willard’s analysis, comparison of these World War II engagements with the historical battles (1618-1905) studied by him will be useful. Table 2 shows a comparison of the distribution of battles by type. Willard’s cases were divided into two categories: I. meeting engagements, and II. sieges, attacks on forts, and similar operations. HERO’s World War II engagements were divided into four types based on the posture of the defender: 1. delay, 2. hasty defense, 3. prepared position, and 4. fortified position. If postures 1 and 2 are considered very roughly equivalent to Willard’s category I, then in both data sets the division into the two gross categories is approximately even.

The distribution of engagements across force ratios, given in Table 3, indicated some differences. Willard’s engagements tend to cluster at the lower end of the scale (1-2) and at the higher end (4 and above), while the majority of the World War II engagements were found in mid-range (1.5 – 4) (Note 8). The frequency with which the numerically inferior force achieved victory is shown in Table 4. It is seen that in neither data set are force ratios good predictors of success in battle (Note 9).

Table 3.

Results of the Analysis Willard’s Correlation Analysis

There are two forms of the Lanchester equations. One represents the case in which firing units on both sides know the locations of their opponents and can shift their fire to a new target when a “kill� is achieved. This leads to the “square� law where the loss rate is proportional to the opponent’s size. The second form represents that situation in which only the general location of the opponent is known. This leads to the “linear� law in which the loss rate is proportional to the product of both force sizes.

As Willard points out, large battles are made up of many smaller fights. Some of these obey one law while others obey the other, so that the overall result should be a combination of the two. Starting with a general formulation of Lanchester’s equations, where g is the exponent of the target unit’s size (that is, g is 0 for the square law and 1 for the linear law), he derives the following linear equation:

log (nc/mc) = log E + g log (mo/no) (1)

where nc and mc are the casualties, E is related to the exchange ratio, and mo and no are the initial force sizes. Linear regression produces a value for g. However, instead of lying between 0 and 1, as expected, the) g‘s range from -.27 to -.87, with the majority lying around -.5. (Willard obtains several values for g by dividing his data base in various ways—by force ratio, by casualty ratio, by historical period, and so forth.) A negative g value is unpleasant. As Willard notes:

Military theorists should be disconcerted to find g < 0, for in this range the results seem to imply that if the Lanchester formulation is valid, the casualty-producing power of troops increases as they suffer casualties (Note 3).

From his results, Willard concludes that his analysis does not justify the use of Lanchester equations in large-scale situations (Note 10).

Analysis of the World War II Engagements

Willard’s computations were repeated for the HERO data set. For these engagements, regression produced a value of -.594 for g (Note 11), in striking agreement with Willard’s results. Following his reasoning would lead to the conclusion that either the Lanchester equations do not represent these engagements, or that the casualty producing power of forces increases as their size decreases.

However, since the Lanchester equations are so convenient analytically and their use is so widespread, it appeared worthwhile to reconsider this conclusion. In deriving equation (1), Willard used binomial expansions in which he retained only the leading terms. It seemed possible that the poor results might he due, in part, to this approximation. If the first two terms of these expansions are retained, the following equation results:

log (nc/mc) = log E + log (Mo-mc)/(no-nc) (2)

Repeating this regression on the basis of this equation leads to g = -.413 (Note 12), hardly an improvement over the initial results.

A second attempt was made to salvage this approach. Starting with raw OLI scores (Note 7), HERO analysts have computed “combat potentials� for both sides in these engagements, taking into account the operational factors of posture, vulnerability, and mobility; environmental factors like weather, season, and terrain; and (when the record warrants) psychological factors like troop training, morale, and the quality of leadership. Replacing the factor (mo/no) in Equation (1) by the combat power ratio produces the result) g = .466 (Note 13).

While this is an apparent improvement in the value of g, it is achieved at the expense of somewhat distorting the Lanchester concept. It does preserve the functional form of the equations, but it requires a somewhat strange definition of “killing rates.�

Analysis Based on the Differential Lanchester Equations

Analysis of the type carried out by Willard appears to produce very poor results for these World War II engagements. Part of the reason for this is apparent from Figure 1, which shows the scatterplot of the dependent variable, log (nc/mc), against the independent variable, log (mo/no). It is clear that no straight line will fit these data very well, and one with a positive slope would not be much worse than the “best� line found by regression. To expect the exponent to account for the wide variation in these data seems unreasonable.

Here, a simpler approach will be taken. Rather than use the data to attempt to discriminate directly between the square and the linear laws, they will be used to estimate linear coefficients under each assumption in turn, starting with the differential formulation rather than the integrated equations used by Willard.

In their simplest differential form, the Lanchester equations may be written;

Square Law; dA/dt = -kdD and dD/dt = kaA (3)

Linear law: dA/dt = -k’dAD and dD/dt = k’aAD (4)

where

A(D) is the size of the attacker (defender)

dA/dt (dD/dt) is the attacker’s (defender’s) loss rate,

ka, k’a (kd, k’d) are the attacker’s (defender’s) killing rates

For this analysis, the day is taken as the basic time unit, and the loss rate per day is approximated by the casualties per day. Results of the linear regressions are given in Table 5. No conclusions should be drawn from the fact that the correlation coefficients are higher in the linear law case since this is expected for purely technical reasons (Note 14). A better picture of the relationships is again provided by the scatterplots in Figure 2. It is clear from these plots that, as in the case of the logarithmic forms, a single straight line will not fit the entire set of 60 engagements for either of the dependent variables.

To investigate ways in which the data set might pro�tably be subdivided for analysis, T-tests of the means of the dependent variable were made for several partitionings of the data set. The results, shown in Table 6, suggest that dividing the engagements by defense posture might prove worthwhile.

Results of the linear regressions by defense posture are shown in Table 7. For each posture, the equation that seemed to give a better fit to the data is underlined (Note 15). From this table, the following very tentative conclusions might be drawn:

  • In an attack on a fortiï¬�ed position, the attacker suffers casualties by the square law; the defender suffers casualties by the linear law. That is, the defender is aware of the attacker’s position, while the attacker knows only the general location of the defender. (This is similar to Deitchman’s guerrilla model. Note 16).
  • This situation is apparently reversed in the cases of attacks on prepared positions and hasty defenses.
  • Delaying situations seem to be treated better by the square law for both attacker and defender.

Table 8 summarizes the killing rates by defense posture. The defender has a much higher killing rate than the attacker (almost 3 to 1) in a fortified position. In a prepared position and hasty defense, the attacker appears to have the advantage. However, in a delaying action, the defender’s killing rate is again greater than the attacker’s (Note 17).

Figure 3 shows the scatterplots for these cases. Examination of these plots suggests that a tentative answer to the study question posed above might be: “Yes, casualties do appear to be related to the force sizes, but the relationship may not be a simple linear one.�

In several of these plots it appears that two or more functional forms may be involved. Consider, for example, the defender‘s casualties as a function of the attacker’s initial strength in the case of a hasty defense. This plot is repeated in Figure 4, where the points appear to fit the curves sketched there. It would appear that there are at least two, possibly three, separate relationships. Also on that plot, the individual engagements have been identified, and it is interesting to note that on the curve marked (1), five of the seven attacks were made by Germans—four of them from the Salerno campaign. It would appear from this that German attacks are associated with higher than average defender casualties for the attacking force size. Since there are so few data points, this cannot be more than a hint or interesting suggestion.

Future Research

This work suggests two conclusions that might have an impact on future lines of research on combat dynamics:

  • Tactics appear to be an important determinant of combat results. This conclusion, in itself, does not appear startling, at least not to the military. However, it does not always seem to have been the case that tactical questions have been considered seriously by analysts in their studies of the effects of varying force levels and force mixes.
  • Historical data of this type offer rich opportunities for studying the effects of tactics. For example, consideration of the narrative accounts of these battles might permit re-coding the engagements into a larger, more sensitive set of engagement categories. (It would, of course, then be highly desirable to add more engagements to the data set.)

While predictions of the future are always dangerous, I would nevertheless like to suggest what appears to be a possible trend. While military analysis of the past two decades has focused almost exclusively on the hardware of weapons systems, at least part of our future analysis will be devoted to the more behavioral aspects of combat.

Janice Bloom Fain, a Senior Associate of CACI, lnc., is a physicist whose special interests are in the applications of computer simulation techniques to industrial and military operations; she is the author of numerous reports and articles in this field. This paper was presented by Dr. Fain at the Military Operations Research Symposium at Fort Eustis, Virginia.

NOTES

[1.] J. H. Engel, “A Verification of Lanchester’s Law,â€� Operations Research 2, 163-171 (1954).

[2.] For example, see R. L. Helmbold, “Some Observations on the Use of Lanchester’s Theory for Prediction,â€� Operations Research 12, 778-781 (1964); H. K. Weiss, “Lanchester-Type Models of Warfare,â€� Proceedings of the First International Conference on Operational Research, 82-98, ORSA (1957); H. K. Weiss, “Combat Models and Historical Data; The U.S. Civil War,â€� Operations Research 14, 750-790 (1966).

[3.] D. Willard, “Lanchester as a Force in History: An Analysis of Land Battles of the Years 1618-1905,� RAC-TD-74, Research Analysis Corporation (1962). what appears to be a possible trend. While military analysis of the past two decades has focused almost exclusively on the hardware of weapons systems, at least part of our future analysis will be devoted to the more behavioral aspects of combat.

[4.] The method of computing the killing rates forced a fit at the beginning and end of the battles. See W. Fain, J. B. Fain, L. Feldman, and S. Simon, “Validation of Combat Models Against Historical Data,� Professional Paper No. 27, Center for Naval Analyses, Arlington, Virginia (1970).

[5.] HERO, “A Study of the Relationship of Tactical Air Support Operations to Land Combat, Appendix B, Historical Data Base.� Historical Evaluation and Research Organization, report prepared for the Defense Operational Analysis Establishment, U.K.T.S.D., Contract D-4052 (1971).

[6.] T. N. Dupuy, The Quantified Judgment Method of Analysis of Historical Combat Data, HERO Monograph, (January 1973); HERO, “Statistical Inference in Analysis in Combat,� Annex F, Historical Data Research on Tactical Air Operations, prepared for Headquarters USAF, Assistant Chief of Staff for Studies and Analysis, Contract No. F-44620-70-C-0058 (1972).

[7.] The Operational Lethality Index (OLI) is a measure of weapon effectiveness developed by HERO.

[8.] Since Willard’s data did not indicate which side was the attacker, his force ratio is defined to be (larger force/smaller force). The HERO force ratio is (attacker/defender).

[9.] Since the criteria for success may have been rather different for the two sets of battles, this comparison may not be very meaningful.

[10.] This work includes more complex analysis in which the possibility that the two forces may be engaging in different types of combat is considered, leading to the use of two exponents rather than the single one, Stochastic combat processes are also treated.

[11.] Correlation coefficient = -.262;

Intercept = .00115; slope = -.594.

[12.] Correlation coefficient = -.184;

Intercept = .0539; slope = -,413.

[13.] Correlation coefficient = .303;

Intercept = -.638; slope = .466.

[14.] Correlation coefficients for the linear law are inflated with respect to the square law since the independent variable is a product of force sizes and, thus, has a higher variance than the single force size unit in the square law case.

[15.] This is a subjective judgment based on the following considerations Since the correlation coefficient is inflated for the linear law, when it is lower the square law case is chosen. When the linear law correlation coefficient is higher, the case with the intercept closer to 0 is chosen.

[16.] S. J. Deitchman, “A Lanchester Model of Guerrilla Warfare,� Operations Research 10, 818-812 (1962).

[17.] As pointed out by Mr. Alan Washburn, who prepared a critique on this paper, when comparing numerical values of the square law and linear law killing rates, the differences in units must be considered. (See footnotes to Table 7).

What Is A Breakpoint?

What Is A Breakpoint?

French retreat from Russia in 1812 by Illarion Mikhailovich Pryanishnikov (1812) [Wikipedia]

After discussing with Chris the series of recent posts on the subject of breakpoints, it seemed appropriate to provide a better definition of exactly what a breakpoint is.

Dorothy Kneeland Clark was the first to define the notion of a breakpoint in her study, Casualties as a Measure of the Loss of Combat Effectiveness of an Infantry Battalion (Operations Research Office, The Johns Hopkins University: Baltimore, 1954). She found it was not quite as clear-cut as it seemed and the working definition she arrived at was based on discussions and the specific combat outcomes she found in her data set [pp 9-12].

DETERMINATION OF BREAKPOINT

The following definitions were developed out of many discussions. A unit is considered to have lost its combat effectiveness when it is unable to carry out its mission. The onset of this inability constitutes a breakpoint. A unit’s mission is the objective assigned in the current operations order or any other instructional directive, written or verbal. The objective may be, for example, to attack in order to take certain positions, or to defend certain positions. 

How does one determine when a unit is unable to carry out its mission? The obvious indication is a change in operational directive: the unit is ordered to stop short of its original goal, to hold instead of attack, to withdraw instead of hold. But one or more extraneous elements may cause the issue of such orders: 

(1) Some other unit taking part in the operation may have lost its combat effectiveness, and its predicament may force changes, in the tactical plan. For example the inability of one infantry battalion to take a hill may require that the two adjoining battalions be stopped to prevent exposing their flanks by advancing beyond it. 

(2) A unit may have been assigned an objective on the basis of a G-2 estimate of enemy weakness which, as the action proceeds, proves to have been over-optimistic. The operations plan may, therefore, be revised before the unit has carried out its orders to the point of losing combat effectiveness. 

(3) The commanding officer, for reasons quite apart from the tactical attrition, may change his operations plan. For instance, General Ridgway in May 1951 was obliged to cancel his plans for a major offensive north of the 38th parallel in Korea in obedience to top level orders dictated by political considerations. 

(4) Even if the supposed combat effectiveness of the unit is the determining factor in the issuance of a revised operations order, a serious difficulty in evaluating the situation remains. The commanding officer’s decision is necessarily made on the basis of information available to him plus his estimate of his unit’s capacities. Either or both of these bases may be faulty. The order may belatedly recognize a collapse which has in factor occurred hours earlier, or a commanding officer may withdraw a unit which could hold for a much longer time. 

It was usually not hard to discover when changes in orders resulted from conditions such as the first three listed above, but it proved extremely difficult to distinguish between revised orders based on a correct appraisal of the unit’s combat effectiveness and those issued in error. It was concluded that the formal order for a change in mission cannot be taken as a definitive indication of the breakpoint of a unit. It seemed necessary to go one step farther and search the records to learn what a given battalion did regardless of provisions in formal orders… 

CATEGORIES OF BREAKPOINTS SELECTED 

In the engagements studied the following categories of breakpoint were finally selected: 

Category of Breakpoint 

No. Analyzed 

I. Attack [Symbol] rapid reorganization [Symbol] attack 

9 

II. Attack [Symbol] defense (no longer able to attack without a few days of recuperation and reinforcement 

21 

III. Defense [Symbol] withdrawal by order to a secondary line 

13 

IV. Defense [Symbol] collapse 

5 

Disorganization and panic were taken as unquestionable evidence of loss of combat effectiveness. It appeared, however, that there were distinct degrees of magnitude in these experiences. In addition to the expected breakpoints at attack [Symbol] defense and defense [Symbol] collapse, a further category, I, seemed to be indicated to include situations in which an attacking battalion was ‘pinned down” or forced to withdraw in partial disorder but was able to reorganize in 4 to 24 hours and continue attacking successfully. 

Category II includes (a) situations in which an attacking battalion was ordered into the defensive after severe fighting or temporary panic; (b) situations in which a battalion, after attacking successfully, failed to gain ground although still attempting to advance and was finally ordered into defense, the breakpoint being taken as occurring at the end of successful advance. In other words, the evident inability of the unit to fulfill its mission was used as the criterion for the breakpoint whether orders did or did not recognize its inability. Battalions after experiencing such a breakpoint might be able to recuperate in a few days to the point of renewing successful attack or might be able to continue for some time in defense. 

The sample of breakpoints coming under category IV, defense [Symbol] collapse, proved to be very small (5) and unduly weighted in that four of the examples came from the same engagement. It was, therefore, discarded as probably not representative of the universe of category IV breakpoints,* and another category (III) was added: situations in which battalions on the defense were ordered withdrawn to a quieter sector. Because only those instances were included in which the withdrawal orders appeared to have been dictated by the condition of the unit itself, it is believed that casualty levels for this category can be regarded as but slightly lower than those associated with defense [Symbol] collapse. 

In both categories II and III, “‘defenseâ€� represents an active situation in which the enemy is attacking aggressively. 

* It had been expected that breakpoints in this category would be associated with very high losses. Such did not prove to be the case. In whatever way the data were approached, most of the casualty averages were only slightly higher than those associated with category II (attack [Symbol] defense), although the spread in data was wider. It is believed that factors other than casualties, such as bad weather, difficult terrain, and heavy enemy artillery fire undoubtedly played major roles in bringing about the collapse in the four units taking part in the same engagement. Furthermore, the casualty figures for the four units themselves is in question because, as the situation deteriorated, many of the men developed severe cases of trench foot and combat exhaustion, but were not evacuated, as they would have been in a less desperate situation, and did not appear in the casualty records until they had made their way to the rear after their units had collapsed.

In 1987-1988, Trevor Dupuy and colleagues at Data Memory Systems, Inc. (DMSi), Janice Fain, Rich Anderson, Gay Hammerman, and Chuck Hawkins sought to create a broader, more generally applicable definition for breakpoints for the study, Forced Changes of Combat Posture (DMSi, Fairfax, VA, 1988) [pp. I-2-3]

The combat posture of a military force is the immediate intention of its commander and troops toward the opposing enemy force, together with the preparations and deployment to carry out that intention. The chief combat postures are attack, defend, delay, and withdraw.

A change in combat posture (or posture change) is a shift from one posture to another, as, for example, from defend to attack or defend to withdraw. A posture change can be either voluntary or forced. 

A forced posture change (FPC) is a change in combat posture by a military unit that is brought about, directly or indirectly, by enemy action. Forced posture changes are characteristically and almost always changes to a less aggressive posture. The most usual FPCs are from attack to defend and from defend to withdraw (or retrograde movement). A change from withdraw to combat ineffectiveness is also possible. 

Breakpoint is a term sometimes used as synonymous with forced posture change, and sometimes used to mean the collapse of a unit into ineffectiveness or rout. The latter meaning is probably more common in general usage, while forced posture change is the more precise term for the subject of this study. However, for brevity and convenience, and because this study has been known informally since its inception as the “Breakpoints” study, the term breakpoint is sometimes used in this report. When it is used, it is synonymous with forced posture change.

Hopefully this will help clarify the previous discussions of breakpoints on the blog.

Human Factors In Combat: Syrian Strike Edition

Human Factors In Combat: Syrian Strike Edition

Missile fire lit up the Damascus sky last week as the U.S. and allies launched an attack on chemical weapons sites. [Hassan Ammar, AP/USA Today]

Even as pundits and wonks debate the political and strategic impact of the 14 April combined U.S., British, and French cruise missile strike on Assad regime chemical warfare targets in Syria, it has become clear that effort was a notable tactical success.

Despite ample warning that the strike was coming, the Syrian regime’s Russian-made S-200 surface-to-air missile defense system failed to shoot down a single incoming missile. The U.S. Defense Department claimed that all 105 cruise missiles fired struck their targets. It also reported that the Syrians fired 40 interceptor missiles but nearly all launched after the incoming cruise missiles had already struck their targets.

Although cruise missiles are difficult to track and engage even with fully modernized air defense systems, the dismal performance of the Syrian network was a surprise to many analysts given the wary respect paid to it by U.S. military leaders in the recent past. Although the S-200 dates from the 1960s, many surmise an erosion in the combat effectiveness of the personnel manning the system is the real culprit.

[A] lack of training, command and control and other human factors are probably responsible for the failure, analysts said.

“It’s not just about the physical capability of the air defense system,� said David Deptula, a retired, three-star Air Force general. “It’s about the people who are operating the system.�

The Syrian regime has become dependent upon assistance from Russia and Iran to train, equip, and maintain its military forces. Russian forces in Syria have deployed the more sophisticated S-400 air defense system to protect their air and naval bases, which reportedly tracked but did not engage the cruise missile strike. The Assad regime is also believed to field the Russian-made Pantsir missile and air-defense artillery system, but it likely was not deployed near enough to the targeted facilities to help.

Despite the pervasive role technology plays in modern warfare, the human element remains the most important factor in determining combat effectiveness.

U.S. Army Invests In Revitalizing Long Range Precision Fires Capabilities

U.S. Army Invests In Revitalizing Long Range Precision Fires Capabilities

U.S. Marines from the The 11th MEU fire their M777 Lightweight 155mm Howitzer during Exercise Alligator Dagger, Dec. 18, 2016. (U.S. Marine Corps/Lance Cpl. Zachery C. Laning/Military.com)

In 2016, Michael Jacobson and Robert H. Scales amplified a warning that after years of neglect during the counterinsurgency war in Iraq and Afghanistan, the U.S. was falling behind potential adversaries in artillery and long range precision fires capabilities. The U.S. Army had already taken note of the performance of Russian artillery in Ukraine, particularly the strike at Zelenopillya in 2014.

Since then, the U.S. Army and Marine Corps have started working on a new Multi-Domain Battle concept aimed at countering the anti-access/area denial (A2/AD) capabilities of potential foes. In 2017, U.S. Army Chief of Staff General Mark Milley made rapid improvement in long range precision fires capabilities the top priority for the service’s modernization effort. It currently aims to field new field artillery, rocket, and missile weapons capable of striking at distances from 70 to 500 kilometers – double the existing ranges – within five years.

The value of ground-based long-range precision fires has been demonstrated recently by the effectiveness of U.S. artillery support, particularly U.S. Army and Marine Corps 155mm howitzers, for Iraqi security forces in retaking Mosul, Syrian Democratic Forces assaulting Raqaa, and in protection of Syrian Kurds being attacked by Russian mercenaries and Syrian regime forces.

According to Army historian Luke O’Brian, the Fiscal Year 2019 Defense budget includes funds to buy 28,737 XM1156 Precision Guided Kit (PGK) 155mm howitzer munitions, which includes replacements for the 6,269 rounds expended during Operation INHERENT RESOLVE. O’Brian also notes that the Army will also buy 2,162 M982 Excalibur 155mm rounds in 2019 and several hundred each in following years.

In addition, in an effort to reduce the dependence on potentially vulnerable Global Positioning System (GPS) satellite networks for precision fires capabilities, the Army has awarded a contract to BAE Systems to develop Precision Guided Kit-Modernization (PGK-M) rounds with internal navigational capacity.

While the numbers appear large at first glance, data on U.S. artillery expenditures in Operation DESERT STORM and IRAQI FREEDOM (also via Luke O’Brian) shows just how much the volume of long-range fires has changed just since 1991. For the U.S. at least, precision fires have indeed replaced mass fires on the battlefield.

Breakpoints in U.S. Army Doctrine

Breakpoints in U.S. Army Doctrine

U.S. Army prisoners of war captured by German forces during the Battle of the Bulge in 1944. [Wikipedia]

One of the least studied aspects of combat is battle termination. Why do units in combat stop attacking or defending? Shifts in combat posture (attack, defend, delay, withdrawal) are usually voluntary, directed by a commander, but they can also be involuntary, as a result of direct or indirect enemy action. Why do involuntary changes in combat posture, known as breakpoints, occur?

As Chris pointed out in a previous post, the topic of breakpoints has only been addressed by two known studies since 1954. Most existing military combat models and wargames address breakpoints in at least a cursory way, usually through some calculation based on personnel casualties. Both of the breakpoints studies suggest that involuntary changes in posture are seldom related to casualties alone, however.

Current U.S. Army doctrine addresses changes in combat posture through discussions of culmination points in the attack, and transitions from attack to defense, defense to counterattack, and defense to retrograde. But these all pertain to voluntary changes, not breakpoints.

Army doctrinal literature has little to say about breakpoints, either in the context of friendly forces or potential enemy combatants. The little it does say relates to the effects of fire on enemy forces and is based on personnel and material attrition.

According to ADRP 1-02 Terms and Military Symbols, an enemy combat unit is considered suppressed after suffering 3% personnel casualties or material losses, neutralized by 10% losses, and destroyed upon sustaining 30% losses. The sources and methodology for deriving these figures is unknown, although these specific terms and numbers have been a part of Army doctrine for decades.

The joint U.S. Army and U.S. Marine Corps vision of future land combat foresees battlefields that are highly lethal and demanding on human endurance. How will such a future operational environment affect combat performance? Past experience undoubtedly offers useful insights but there seems to be little interest in seeking out such knowledge.

Trevor Dupuy criticized the U.S. military in the 1980s for its lack of understanding of the phenomenon of suppression and other effects of fire on the battlefield, and its seeming disinterest in studying it. Not much appears to have changed since then.

Abstraction and Aggregation in Wargame Modeling

Abstraction and Aggregation in Wargame Modeling

[IPMS/USA Reviews]

“All models are wrong, some models are useful.â€� – George Box

Models, no matter what their subjects, must always be an imperfect copy of the original. The term “model” inherently has this connotation. If the subject is exact and precise, then it is a duplicate, a replica, a clone, or a copy, but not a “model.” The most common dimension to be compromised is generally size, or more literally the three spatial dimensions of length, width and height. A good example of this would be a scale model airplane, generally available in several ratios from the original, such as 1/144, 1/72 or 1/48 (which are interestingly all factors of 12 … there are also 1/100 for the more decimal-minded). These mean that the model airplane at 1/72 scale would be 72 times smaller … take the length, width and height measurements of the real item, and divide by 72 to get the model’s value.

If we take the real item’s weight and divide by 72, we would not expect our model to weight 72 times less! Not unless the same or similar materials would be used, certainly. Generally, the model has a different purpose than replicating the subject’s functionality. It is helping to model the subject’s qualities, or to mimic them in some useful way. In the case of the 1/72 plastic model airplane of the F-15J fighter, this might be replicating the sight of a real F-15J, to satisfy the desire of the youth to look at the F-15J and to imagine themselves taking flight. Or it might be for pilots at a flight school to mimic air combat with models instead of ha

The model aircraft is a simple physical object; once built, it does not change over time (unless you want to count dropping it and breaking it…). A real F-15J, however, is a dynamic physical object, which changes considerably over the course of its normal operation. It is loaded with fuel, ordnance, both of which have a huge effect on its weight, and thus its performance characteristics. Also, it may be occupied by different crew members, whose experience and skills may vary considerably. These qualities of the unit need to be taken into account, if the purpose of the model is to represent the aircraft. The classic example of this is a flight envelope model of an F-15A/C:

[Quora]

This flight envelope itself is a model, it represents the flight characteristics of the F-15 using two primary quantitative axes – altitude and speed (in numbers of mach), and also throttle setting. Perhaps the most interesting thing about this is the realization than an F-15 slows down as it descends. Are these particular qualities of an F-15 required to model air combat involving such and aircraft?

How to Apply This Modeling Process to a Wargame?

The purpose of the war game is to model or represent the possible outcome of a real combat situation, played forward in the model at whatever pace and scale the designer has intended.

As mentioned previously, my colleague and I are playing Asian Fleet, a war game that covers several types of naval combat, including those involving air units, surface units and submarine units. This was published in 2007, and updated in 2010. We’ve selected a scenario that has only air units on either side. The premise of this scenario is quite simple:

The Chinese air force, in trying to prevent the United States from intervening in a Taiwan invasion, will carry out an attack on the SDF as well as the US military base on Okinawa. Forces around Shanghai consisting of state-of-the-art fighter bombers and long-range attack aircraft have been placed for the invasion of Taiwan, and an attack on Okinawa would be carried out with a portion of these forces. [Asian Fleet Scenario Book]

Of course, this game is a model of reality. The infinite geospatial and temporal possibilities of space-time which is so familiar to us has been replaced by highly aggregated discreet buckets, such as turns that may last for a day, or eight hours. Latitude, longitude and altitude are replaced with a two-dimensional hexagonal “honey comb” surface. Hence, distance is no longer computed in miles or meters, but rather in “hexes”, each of which is about 50 nautical miles. Aircraft are effectively aloft, or on the ground, although a “high mission profile” will provide endurance benefits. Submarines are considered underwater, or may use “deep mode” attempting to hide from sonar searches.

Maneuver units are represented by “counters” or virtual chits to be moved about the map as play progresses. Their level of aggregation varies from large and powerful ships and subs represented individually, to smaller surface units and weaker subs grouped and represented by a single counter (a “flotilla”), to squadrons or regiments of aircraft represented by a single counter. Depending upon the nation and the military branch, this may be a few as 3-5 aircraft in a maritime patrol aircraft (MPA) detachment (“recon” in this game), to roughly 10-12 aircraft in a bomber unit, to 24 or even 72 aircraft in a fighter unit (“interceptor” in this game).

Enough Theory, What Happened?!

The Chinese Air Force mobilized their H6H bomber, escorted by large numbers of Flankers (J11 and Su-30MK2 fighters from the Shanghai area, and headed East towards Okinawa. The US Air Force F-15Cs supported by airborne warning and control system (AWACS) detected this inbound force and delayed engagement until their Japanese F-15J unit on combat air patrol (CAP) could support them, and then engaged the Chinese force about 50 miles from the AWACS orbits. In this game, air combat is broken down into two phases, long-range air to air (LRAA) combat (aka beyond visual range, BVR), and “regular” air combat, or within visual range (WVR) combat.

In BVR combat, only units marked as equipped with BVR capability may attack:

  • 2 x F-15C units have a factor of 32; scoring a hit in 5 out of 10 cases, or roughly 50%.
  • Su-30MK2 unit has a factor of 16; scoring a hit in 4 out of 10 cases, ~40%.

To these numbers a modifier of +2 exists when the attacker is supported by AWACS, so the odds to score a hit increase to roughly 70% for the F-15Cs … but in our example they miss, and the Chinese shot misses as well. Thus, the combat proceeds to WVR.

In WVR combat, each opposing side sums their aerial combat factors:

  • 2 x F-15C (32) + F-15J (13) = 45
  • Su-30MK2 (15) + J11 (13) + H6H (1) = 29

These two numbers are then expressed as a ratio, attacker-to-defender (45:29), and rounded down in favor of the defender (1:1), and then a ten-sided-die (d10) is rolled to consult the Air-to-Air Combat Results Table, on the “CAP/AWACS Interception” line. The die was rolled, and a result of “0/0r” was achieved, which basically says that neither side takes losses, but the defender is turned back from the mission (“r” being code for “return to base”). Given the +2 modifier for the AWACS, the worst outcome for the Allies would be a mutual return to base result (“0r/0r”). The best outcome would be inflicting two “steps” of damage, and sending the rest home (“0/2r”). A step of loss is about one half of an air unit, represented by flipping over the counter or chit, and operating with the combat factors at about half strength.

To sum this up, as the Allied commander, my conclusion was that the Americans were hung-over or asleep for this engagement.

I am encouraged by some similarities between this game and the fantastic detail that TDI has just posted about the DACM model, here and here. Thus, I plan to not only dissect this Asian Fleet game (VGAF), but also go a gap analysis between VGAF and DACM.

The Dupuy Air Campaign Model (DACM)

The Dupuy Air Campaign Model (DACM)

[The article below is reprinted from the April 1997 edition of The International TNDM Newsletter. A description of the TDI Air Model Historical Data Study can be found here.]

The Dupuy Air Campaign Model
by Col. Joseph A. Bulger, Jr., USAF, Ret.

The Dupuy Institute, as part of the DACM [Dupuy Air Campaign Model], created a draft model in a spreadsheet format to show how such a model would calculate attrition. Below are the actual printouts of the “interim methodology demonstration,” which shows the types of inputs, outputs, and equations used for the DACM. The spreadsheet was created by Col. Bulger, while many of the formulae were the work of Robert Shaw.

The Dupuy Institute Air Model Historical Data Study

The Dupuy Institute Air Model Historical Data Study

British Air Ministry aerial combat diagram that sought to explain how the RAF had fought off the Luftwaffe. [World War II Today]

[The article below is reprinted from the April 1997 edition of The International TNDM Newsletter.]

Air Model Historical Data Study
by Col. Joseph A. Bulger, Jr., USAF, Ret

The Air Model Historical Study (AMHS) was designed to lead to the development of an air campaign model for use by the Air Command and Staff College (ACSC). This model, never completed, became known as the Dupuy Air Campaign Model (DACM). It was a team effort led by Trevor N. Dupuy and included the active participation of Lt. Col. Joseph Bulger, Gen. Nicholas Krawciw, Chris Lawrence, Dave Bongard, Robert Schmaltz, Robert Shaw, Dr. James Taylor, John Kettelle, Dr. George Daoust and Louis Zocchi, among others. After Dupuy’s death, I took over as the project manager.

At the �rst meeting of the team Dupuy assembled for the study, it became clear that this effort would be a serious challenge. In his own style. Dupuy was careful to provide essential guidance while, at the same time, cultivating a broad investigative approach to the unique demands of modeling for air combat. It would have been no surprise if the initial guidance established a focus on the analytical approach, level of aggregation, and overall philosophy of the QJM [Quantified Judgement Model] and TNDM [Tactical Numerical Deterministic Model]. It was clear that Trevor had no intention of steering the study into an air combat modeling methodology based directly on QJM/TNDM. To the contrary, he insisted on a rigorous derivation of the factors that would permit the �nal choice of model methodology.

At the time of Dupuy’s death in June 1995, the Air Model Historical Data Study had reached a point where a major decision was needed. The early months of the study had been devoted to developing a consensus among the TDI team members with respect to the factors that needed to be included in the model. The discussions tended to highlight three areas of particular interest—factors that had been included in models currently in use, the limitations of these models, and the need for new factors (and relationships) peculiar to the properties and dynamics of the air campaign. Team members formulated a family of relationships and factors, but the model architecture itself was not investigated beyond the surface considerations.

Despite substantial contributions from team members, including analytical demonstrations of selected factors and air combat relationships, no consensus had been achieved. On the contrary, there was a growing sense of need to abandon traditional modeling approaches in favor of a new application of the “Dupuy Method� based on a solid body of air combat data from WWII.

The Dupuy approach to modeling land combat relied heavily on the ratio of force strengths (largely determined by �repower as modi�ed by other factors). After almost a year of investigations by the AMHDS team, it was beginning to appear that air combat differed in a fundamental way from ground combat. The essence of the difference is that in air combat, the outcome of the maneuver battle for platform position must be determined before the �repower relationships may be brought to bear on the battle outcome.

At the time of Dupuy’s death, it was apparent that if the study contract was to yield a meaningful product, an immediate choice of analysis thrust was required. Shortly prior to Dupuy’s death, I and other members of the TDI team recommended that we adopt the overall approach, level of aggregation, and analytical complexity that had characterized Dupuy’s models of land combat. We also agreed on the time-sequenced predominance of the maneuver phase of air combat. When I was asked to take the analytical lead for the contact in Dupuy’s absence, I was reasonably conï¬�dent that there was overall agreement.

In view of the time available to prepare a deliverable product, it was decided to prepare a model using the air combat data we had been evaluating up to that point—June 1995. Fortunately, Robert Shaw had developed a set of preliminary analysis relationships that could be used in an initial assessment of the maneuver/�repower relationship. In view of the analytical, logistic, contractual, and time factors discussed, we decided to complete the contract effort based on the following analytical thrust:

  1. The contract deliverable would be based on the maneuver/firepower analysis approach as currently formulated in Robert Shaw’s performance equations;
  2. A spreadsheet formulation of outcomes for selected (Battle of Britain) engagements would be presented to the customer in August 1995;
  3. To the extent practical, a working model would be provided to the customer with suggestions for further development.

During the following six weeks, the demonstration model was constructed. The model (programmed for a Lotus 1-2-3 style spreadsheet formulation) was developed. Mechanized, and demonstrated to ACSC in August 1995. The �nal report was delivered in September of 1995.

The working model demonstrated to ACSC in August 1995 suggests the following observations:

  • A substantial contribution to the understanding of air combat modeling has been achieved.
  • While relationships developed in the Dupuy Air Combat Model (DACM) are not fully mature, they are analytically signiï¬�cant.
  • The approach embodied in DACM derives its authenticity from the famous “Dupuy Methodâ€� thus ensuring its strong correlations with actual combat data.
  • Although demonstrated only for air combat in the Battle of Britain, the methodology is fully capable of incorporating modem technology contributions to sensor, command and control, and ï¬�repower performance.
  • The knowledge base, fundamental performance relationships, and methodology contributions embodied in DACM are worthy of further exploration. They await only the expression of interest and a relatively modest investment to extend the analysis methodology into modem air combat and the engagements anticipated for the 21st Century.

One �nal observation seems appropriate. The DACM demonstration provided to ACSC in August 1995 should not be dismissed as a perhaps interesting, but largely simplistic approach to air combat modeling. It is a signi�cant contribution to the understanding of air combat relationships that will prevail in the 2lst Century. The Dupuy Institute is convinced that further development of DACM makes eminent good sense. An exploitation of the maneuver and �repower relationships already demonstrated in DACM will provide a valid basis for modeling air combat with modern technology sensors, control mechanisms, and weapons. It is appropriate to include the Dupuy name in the title of this latest in a series of distinguished combat models. Trevor would be pleased.